Chapter 11

Work Energy Theorem

\[\Delta K = W - \Delta U \quad \text{In this case, there is no change in potential energy} \]

\[\Delta K = W \]

\[\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = -fl \]

\[\frac{1}{2}mv_0^2 = fl = \mu_k F_n l = \mu_k mg l \]

\[\mu_k = \frac{v_0^2}{2gL} = \frac{(1.2m/2)^2}{2(0.8)(2m)} = 0.037 \]
CHAPTER 11

\[m = 100 \text{ kg} \]
\[k = 8 \times 10^4 \text{ N/m} \]
\[x = 0.5 \text{ m} \]

\[\text{PE}_{\text{spring}} = \frac{1}{2} k x^2 \]

THE SPEED when the Poisson Loses Contact
with the spring can be found by analyzing the energy of the spring system.

Initially, the energy is **All Potential**

\[E_i = \text{PE}_{i} = \frac{1}{2} k x_i^2 \]

Finally, all the energy is **Kinetic**.

\[E_f = \frac{1}{2} m v^2 \]

USING CONSERVATION OF ENERGY

\[\Delta K = W - \Delta U \implies \Delta K = -\Delta U \quad \text{if} \quad W = 0 \]

\[k_f - k_i = \text{PE}_f - \text{PE}_i \]

\[k_f + \text{PE}_f = k_i + \text{PE}_i \]

\[\frac{1}{2} m v^2 = \frac{1}{2} k x^2 \]

\[v^2 = \frac{k}{m} x^2 \]

\[v = \sqrt{\frac{k}{m} x} = \sqrt{\frac{8 \times 10^4 \text{ N/m}}{100 \text{ kg}}} (0.5) = 14.14 \text{ m/s} \]
Let's find the velocity at the lowest point.

\[E_i = \frac{1}{2} m v_0^2 + m g h \]

\[E_f = \frac{1}{2} m v^2 \]

\[E_f = E_i \]

\[\frac{1}{2} m v_0^2 + m g h = \frac{1}{2} m v^2 \]

\[v_0^2 + 2 g h = v^2 \]

where \(v_0 = 14.14 \text{ m/s} \)

\[v^2 = \frac{v_0^2 + 2 g h}{1 + \left(\frac{14.14}{2 \times 9.8} \right)^2} \]

\[v = 19.89 \text{ m/s} \]

Now, find how far the mass goes.

\[\Delta E = W \]

\[E_i = \frac{1}{2} m v_0^2 \]

\[E_f = m g h_f \]

\[\Delta E = m g h_f - \frac{1}{2} m v_0^2 = -m_k m g l \cos \theta \]

Use \(\sin \theta = \frac{h_f}{l} \Rightarrow l \sin \theta = h_f \)

\[m g l \sin \theta = -\frac{1}{2} m v_0^2 = -m_k m g l \cos \theta \]

Solve for \(l \)

\[\frac{v_0^2}{2} = g l \sin \theta + m_k m g \cos \theta \]

\[l = \frac{v_0^2}{g (\sin \theta + m_k m g \cos \theta)} = \frac{(19.89)^2}{2 \times 9.8 \times (\sin(30^\circ) + 0.15 \cos(30^\circ))} = 32.04 \text{ m} \]