Vectors and components

For a vector \vec{V}, its components in a given Cartesian coordinate system are:

$$V_x = V \cos \theta, \quad V_y = V \sin \theta$$ \hspace{1cm} \text{(comp)}

Label V stands for the magnitude: $V \equiv |\vec{V}|$. The magnitude and angle relate to the components as:

$$|\vec{V}| = \sqrt{V_x^2 + V_y^2}, \quad \tan \theta = \frac{V_y}{V_x}$$ \hspace{1cm} \text{(vec)}

Angle calculated as above may need adjustments, regarding its sign and factors of $\pm \pi$.

Kinematics

Equations of kinematics, integrated from a constant acceleration.

$$x = x_0 + v_{0x} t + \frac{1}{2} a_x t^2$$ \hspace{1cm} \text{(k1)}

$$v_x = v_{0x} + a_x t$$ \hspace{1cm} \text{(k2)}

$$v_x^2 = v_{0x}^2 + 2 a_x \Delta x, \quad \text{where} \quad \Delta x = (x - x_0)$$ \hspace{1cm} \text{(k3)}

The analogous set holds involving the y-components of position, velocity, and acceleration.

Newton’s Laws

The vector equation for Newton’s first and second Law: $\sum \vec{F}_i = m\vec{a}$ (sum over all forces).

Written out in components:

$$\sum_i F_{ix} = m a_x$$ \hspace{1cm} \text{(Sums are over all components.)}$$

$$\sum_i F_{iy} = m a_y$$ \hspace{1cm} \text{(NL)}

Friction. F_N is the “normal force.” Indices “s” and “k” stand for “static” and “kinetic.”

$$F_{fr}^{(s)} \leq \mu_s F_N \quad \text{ (static)}$$
$$F_{fr}^{(k)} = \mu_k F_N \quad \text{ (kinetic)}$$ \hspace{1cm} \text{(fric)}

Direction is opposite to motion (kinetic), or opposite to where it would go without friction (static).

Gravity. Gravitational force, on an object of mass m, close to the surface of Earth.

$$F_{grav} = mg \quad \text{ (g = 9.8 m/s}^2)$$ \hspace{1cm} \text{(grav)}

Direction: Earth’s gravitational force on an object of mass m is toward Earth’s center.

Quadratic equation. $ax^2 + bx + c = 0$, where a, b, c are real coefficients, has solutions:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ \hspace{1cm} \text{(qdr)}

The solutions can be: both real (possibly equal), if $b^2 - 4ac \geq 0$; or complex otherwise.