First Midterm Exam

Monday, October 16, 2017

Name____KEY_____

You may use model kits but no other material with chemical information without instructor approval.

Please do not use any electronic devices (calculators, phones, ipods, smart watches).

1					L. L.	UPAC	Period	lic Tab	ole of	the Ele	ement	s					18
1 H hydrogen																	He helium
1.006 [1.0078, 1.0082]	2		Key:									13	14	15	16	17	4.0026
3 Li lithium 6.94 [6.938, 6.997]	4 Be beryllium 9.0122		atomic num Symbo name conventional atomic v standard atomic v	ber Ol weight								5 B boron 10.81 [10.806, 10.821]	6 C carbon 12011 [12.009, 12.012]	7 N nitrogen 14.007 [14.008, 14.008]	8 O oxygen 15.999 [15.999, 16.000]	9 F fluorine 18.998	10 Ne neon 20.180
11 Na sodium 22.990	12 Mg magnesium 24.305 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus 30.974	16 S sulfur 32.06 [32.059, 32.076]	17 Cl chlorine 35.45 [35.446, 35.457]	18 Ar argon 39.948
19 K potassium	Ca calcium	21 Sc scandium	22 Ti titanium	23 V vanadium	Cr chromium	25 Mn manganese	26 Fe iron	Co cobalt	28 Ni nickel	Cu copper	30 Zn zinc	31 Ga gallium	32 Ge germanium	AS arsenic	34 Se selenium	35 Br bromine 78.904	36 Kr krypton
37 Rb rubidium	38 Sr strontium	39 Y yttrium	47.867 40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 TC technetium	44 Ru ruthenium	45 Rh rhodium	46 Pd palladium	47 Ag silver	48 Cd cadmium	49 In indium	50 Sn tin	51 Sb antimony	52 Te tellurium	53 iodine	54 Xe xenon
85.468	87.62	88.906	91.224(2)	92.906	95.95		101.07(2)	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60(3)	126.90	131.29
55 Cs caesium	56 Ba barium	57-71 Ianthanoids	72 Hf hafnium	73 Ta tantalum	74 W tungsten	75 Re rhenium	76 Os osmium	77 Ir iridium	78 Pt platinum	79 Au gold	80 Hg mercury	81 TI thallium 294.38	82 Pb lead	83 Bi bismuth	84 Po polonium	At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	190.23(3) 108 HS hassium	192.22 109 Mt meitnerium	195.08 110 DS darmstadtium	196.97 111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 Mc moscovium	116 Lv livermorium	117 Ts tennessine	118 Og oganesson
										74							
				Ce	Pr praseodymium	Nd neodymium	Pm	Sm samarium	Eu europium	Gd gadolinium	Tb terbium	Dy dysprosium	Ho	Er	Tm	Yb ytterbium	Lu
				140.12	140.91	144.24		150.36(2)	151.96	157.25(3)	158.93	162.50	164.93	167.26	168.93	173.05	174.97
JTERNATIONAL JRE AND APPLI	RNATIONAL UNION OF AND APPLIED CHEMISTRY			90 Th thorium 232.04	91 Pa protactinium 231.04	92 U uranium 238.03	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	103 Lr Iawrencium

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.

1. (24 points) 2-D and calculated 3-D structures for a molecule C_5H_9N is shown at the right. Carbon atoms are labeled numerically; the 3-D orientation is looking down the H-C2 bond vector.

a. Based on the structure, list the approximate atomic orbital hybridization of each of the following:

The methyl carbon: _____sp³____ Carbon 3: ____sp²____ The nitrogen: _sp2, but we'll accept sp³

b. Draw two proper, complete resonance structures for this molecule.

c. Based on your answers above, describe the components of the C2-N bond in terms of bond type (sigma, pi). You may use any descriptions or drawings you wish.

All covalently bonded atoms have a σ bond arising from the overlap of appropriate hybridized atomic orbitals. Based on the resonance forms in (b), there is also a partial π bond between C2 and nitrogen. That justifies claiming sp² hybridization for nitrogen (despite a bit of pyramidalization evident in the picture in (a)); C2 is clearly sp² regardless.

1. d. Based on the bond lengths shown below (and your prior answers) describe whether you think the C-N bonds in C_5H_9N are single, double or triple bonds and why.

C-N Bond Length
1.399 Å
1.473 Å
1.467 Å
1.266 Å
1.149 Å

The C2-N bond is in between a single and a double bond, as expected from the resonance description.

The C5-N bond is actually a bit longer than that in the reference compound, but is clearly a single bond as it is the longest C-N bond under discussion.

2. (9 points) Given the pK_as of protonated species shown below, predict the magnitude of K_{eq} for each of the following reactions (K_{eq} >> 1, K_{eq} << 1, or K_{eq} \approx 1)

3. (15 points) Identify each atom highlighted with an arrow in the structures below as either nucleophilic (N) or electrophilic (E). (Label each as N or E.)

- 4. (12 points) Draw structures for each of the following compounds.
- a. n-Hexane

b. 3-methylheptane

c. 2-bromo-3-(1-propyl)nonane

Br

5. (16 points) Using Newman projections, show the possible staggered rotamers of 3methylpentane, looking down the C2-C3 bond. Rank them in order of stability. (Hint: draw 3methylpentane and identify the bond down which you need to look.)

All of these have gauche interactions with the C1-methyl group. The most stable has 1 only, with the C-3 methyl. The least stable has 2, one each with the C3-methyl and with the C4/C5 ethyl group. The second-most stable is just a tad less stable because most of the time the ethyl group is pointed away, but to the extent it can rotate around it will affect the overall energy.

6. (24 points) Consider the free-radical halogenation of 1,4-dimethylcyclohexane (shown below in part a).

a. Label each of the different carbons as primary, secondary or tertiary.

b. Chlorination, as we know, is relatively nonselective. Draw all possible isomers for monochlorination of 1,4-dimethylcyclohexane (ignore cis/trans isomerism and other aspects of stereochemistry).

c. Bromination, on the other hand, tends to be more selective. Show the mechanistic propagation steps (including electron-pushing arrows) that illustrate selective formation of a single product from 1,4-dimethylcyclohexane.

Note: Br• is generated in the initiation step (I haven't asked for that). A common error is to have the organic radical react with Br• instead of Br_2 . This is statistically very, very unlikely (the radical species never build up to any large concentration), and such a reaction is actually one of several chain termination steps. Reaction with Br_2 regenerates Br•, which goes back to react with another molecule of reactant and carry the chain.

Bond strengths (kcal/mol):

F-F	38
Cl-Cl	58
Br-Br	46
I-I	36
H-F	136
H-Cl	103
H-Br	87
H-I	71
CH₃-H	105
CH_3CH_2-H	101
(CH ₃) ₂ CH-H	98.5
(CH ₃) ₃ C-H	96.5
CH₃-F	110
CH₃-Cl	85
CH₃-Br	70
CH3-I	57
CH ₃ CH ₂ - F	111
CH₃CH₂-Cl	84
CH₃CH₂-Br	70
$CH_3CH_2 - I$	56
(CH ₃) ₂ CH-F	111
(CH ₃) ₂ CH-Cl	84
(CH₃)₂CH-Br	71
$(CH_3)_2CH - I$	56
(CH₃)₃C-F	110
(CH₃)₃C-Cl	85
(CH₃)₃C-Br	71
(CH ₃) ₃ C-I	55