CH 334 Form A

Second	Midterm	Fxam
JUULIU	IVIIGLOTTI	$-\lambda u \Pi$

Monday, November 6, 2017

Name			

You may use model kits but no other material with chemical information without instructor approval. Tables of possibly useful data are included on the last page.

Please do not use any electronic gadgets (calculators, music players, phones, etc.).

	IUPAC Periodic Table of the Elements							18										
	1 H hydrogen																	He helium
	1,008 [1.0078, 1.0082]	2		Key:									13	14	15	16	17	4.0026
	3 Li lithium 6.94 16.938, 6.9971	4 Be beryllium 9.0122		Symbo name conventional atomic v standard atomic v	ol wight								5 B boron 10.81 [10.806, 10.821]	6 C carbon 12011 [12,009, 12,012]	7 N nitrogen 14.007 [14.008, 14.008]	8 O oxygen 15.999 [15.999, 16.000]	9 F fluorine	10 Ne neon
	11 Na sodium 22,990	12 Mg magnesium 24305 [24304, 24307]	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus	16 S sulfur 32.06 [32.059, 32.076]	17 CI chlorine 35.45 [35.446, 35.457]	18 Ar argon
	19 K potassium	Ca calcium	Sc scandium	22 Ti titanium	Vanadium	Cr chromium	25 Mn manganese	Fe iron	Co cobalt	28 Ni nickel	Cu copper	Zn zinc	Ga gallium	Ge germanium	As arsenic	34 Se selenium	35 Br bromine	36 Kr krypton
	39.098 37 Rb rubidium	38 Sr strontium	44.956 39 Y yttrium	47.867 40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 Tc technetium	44 Ru ruthenium	45 Rh rhodium	46 Pd palladium	63.546(3) 47 Ag silver	48 Cd cadmium	69.723 49 In indium	72.630(8) 50 Sn tin	74.922 51 Sb antimony	78.971(8) 52 Te tellurium	[79.901, 79.907] 53 I iodine	54 Xe xenon
	85.468 55	87.62 56	88.906	91.224(2)	92.906	95.95	75	101.07(2)	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60(3)	126.90 85	131.29
	Cs caesium	Ba barium	57-71 lanthanoids	Hf hafnium	Ta tantalum	74 W tungsten	Re rhenium	76 Os osmium	lr iridium	78 Pt platinum	Au gold	Hg mercury	81 TI thallium	Pb lead	Bi bismuth	Po polonium	At astatine	Rn radon
	132.91	137.33		178.49(2)	180.95	183.84	186.21	190.23(3)	192.22	195.08	196.97	200.59	254.38 [204.38, 204.39]	207.2	208.98			
	Fr francium	Ra radium	89-103 actinoids	104 Rf rutherfordium	Db dubnium	106 Sg seaborgium	Bh bohrium	HS hassium	109 Mt meitnerium	DS darmstadtium	Rg roentgenium	Cn copernicium	Nh nihonium	114 FI flerovium	MC moscovium	116 Lv livermorium	117 Ts tennessine	Og oganesson
				57 La lanthanum		59 Pr praseodymium	60 Nd neodymium	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu lutetium
INTERNA PURE AN				89 AC actinium	90 Th thorium 232.04	91 Pa protactinium 231.04	92 U uranium 238.03	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	168.93 101 Md mendelevium	173.05 102 No nobelium	174.97 103 Lr lawrencium

- 1. (15 points) Draw correct structures for the following compounds.
- a. trans-1,3-dichlorocyclopentane

b. cis-4-methyl-iso-propylcyclohexane

c. S-3-bromooctane

2. (20 points) Identify each molecule shown below as chiral (C) or achiral (A). Circle every stereocenter and assign the configuration as R or S.

$$CH_3$$
 $H \longrightarrow OH$
 $HO \longrightarrow H$
 CH_3

- 3. (20 points) Menthol, the major flavoring component in peppermint, has the following structure (right). The specific rotation, $[\alpha]_D = -50.2^\circ$.
- A. The enantiomer of (-)-menthol (we call it (+)-menthol) can be prepared synthetically. State what specific rotation it should show, and explain your reasoning.

B. The synthesis of this enantiomer also results in a third compound, (-)neomenthol, with the structure at the right. The amount produced varies with reaction conditions but is typically 2-15%. Its specific rotation, $[\alpha]_D = -20.8^\circ$.

Predict the approximate specific rotation that would be observed for the synthetic mixture of (+)-menthol and (-)-neomenthol. Explain your reasoning. (A quantitative calculation is not necessary.)

(-)-neomenthol

- C. Which of the following mixtures could be separated by recrystallization (relying on different solubilities)?
- -A 1:1 mixture of (+)-menthol and (-)-menthol
- -A 1:1 mixture of (+)-menthol and (-)-neomenthol

Explain your choice(s) based on the nature of the stereochemical relationship between each pair of isomers.

4. (25 points) This question deals with <i>cis-</i> 1,3-dimethylcyclohexane.
A. Draw the two ring-flip isomers of the chair conformation of cis-1,3-dimethylcyclohexane.
B. Which of these is more stable, and by how much? Explain your reasoning.
C. How would placing an awagen at atom E in the ring (in place of CLL) change the equilibrium between
C. How would placing an oxygen at atom 5 in the ring (in place of CH ₂) change the equilibrium between the two ring flip isomers? Explain (Hint: consider why one ring flip isomer is disfavored).

5. (20 points) Draw each product expected from monochlorination of 3-methylpentane using Cl_2 and hv. Include all distinct stereoisomers.

If the following free radical intermediate could be generated selectively (a challenging task!), would its reaction with Cl_2 generate a racemic or a nonracemic mixture of products? Explain.

Bond strengths (kcal/mol):

A values (kcal/mol)

F-F C1-C1 Br-Br I-I H-F H-C1 H-Br H-I CH ₃ -H (CH ₃) ₂ CH-H (CH ₃) ₂ CH-H (CH ₃ -F CH ₃ -C1 CH ₃ -Br CH ₃ -I CH ₃ CH ₂ -F CH ₃ CH ₂ -F CH ₃ CH ₂ -C1 CH ₃ CH ₂ -C1 (CH ₃) ₂ CH-F (CH ₃) ₂ CH-C1 (CH ₃) ₂ CH-C1 (CH ₃) ₂ CH-Br (CH ₃) ₂ CH-I (CH ₃) ₃ C-F	38 58 46 36 136 103 87 71 105 101 98.5 96.5 110 85 70 57 111 84 70 56 111 84 71 56 110
(CH ₃) ₃ C-F	
(CH ₃) ₃ C-Cl (CH ₃) ₃ C-Br (CH ₃) ₃ C-I	85 71 55
(0113/30-1	33

<u>Substituent</u>	Α
Me	1.8
Et	1.8
ⁱ Pr	2.1
^t Bu	4.5
O-Me	0.75
Cl	0.52
Br	0.55
I	0.46
Methyl-Methyl 1,3	
interaction	3.7