CH 334

Final Exam

Tuesday, December 5, 2017

Name

You may use model kits but no other material with chemical information without instructor approval. Tables of possibly useful data are included on the last page.

Please do not use any electronic gadgets (calculators, music players, phones, etc.).

1 1 H	IUPAC Periodic Table of the Elements										18 2 He						
hydrogen 1.008 [1.0078, 1.0082]	2		Key:									13	14	15	16	17	helium 4.0026
3 Li lithium 6.94	4 Be beryllium		atomic num Symbo name conventional atomic of	ber DI								5 B boron 10.81	6 C carbon 12011	7 N nitrogen 14.007	8 O oxygen 15.999	9 F fluorine	10 Ne neon
11 Na sodium 22 990	12 Mg magnesium 24305 124 307	3	4	5	6	7	8	9	10	11	12	13 AI aluminium 26.982	14 Si silicon 28.085 178.084, 28.085	15 P phosphorus	16 S sulfur 32.06 132 059 32 0761	17 Cl chlorine 35.45 135.446, 35.4571	18 Ar argon
19 K potassium	20 Ca calcium	21 Sc scandium	22 Ti titanium	23 V vanadium	24 Cr chromium	25 Mn manganese	26 Fe iron	27 Co cobalt	28 Ni nickel	Cu copper	Zn zinc	31 Ga gallium	32 Ge germanium	33 As arsenic	34 Se selenium	35 Br bromine 71.904	36 Kr krypton
39.098 37 Rb rubidium	40.078(4) 38 Sr strontium	44.956 39 Y yttrium	47.867 40 Zr zirconium	41 Nb niobium	51.996 42 Mo molybdenum	43 TC technetium	55.845(2) 44 Ru ruthenium	58.933 45 Rh rhodium	58.693 46 Pd palladium	63.546(3) 47 Ag silver	48 Cd cadmium	69.723 49 In indium	72.630(8) 50 Sn tin	51 Sb antimony	78.971(8) 52 Te tellurium	[79.901, 79.907] 53 iodine	83.798(2) 54 Xe xenon
85.468 55 CS caesium	56 Ba barium	88.906 57-71 Ianthanoids	91.224(2) 72 Hf hafnium	92.906 73 Ta tantalum	95.95 74 W tungsten	75 Re rhenium	101.07(2) 76 OS osmium	102.91 77 Ir iridium	106.42 78 Pt platinum	107.87 79 Au gold	80 Hg mercury	114.82 81 TI thallium	118.71 82 Pb lead	121.76 83 Bi bismuth	127.60(3) 84 PO polonium	85 At astatine	131.29 86 Rn radon
132.91 87 Fr francium	137.33 88 Ra radium	89-103 actinoids	178.49(2) 104 Rf rutherfordium	180.95 105 Db dubnium	183.84 106 Sg seaborgium	186.21 107 Bh bohrium	190.23(3) 108 HS hassium	192.22 109 Mt meitnerium	195.08 110 DS darmstadtium	196.97 111 Rg roentgenium	200.59 112 Cn copernicium	[204.38, 204.39] 113 Nh nihonium	207.2 114 Fl flerovium	208.98 115 MC moscovium	116 Lv livermorium	117 TS tennessine	0ganesson
				58 Ce cerium	59 Pr praseodymium	60 Nd neodymium	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu Iutetium
NTERNATIONAL URE AND APPLI	E AND APPLIED CHEMISTRY			140.12 90 Th thorium 232.04	91 Pa protactinium 231.04	144.24 92 U uranium 238.03	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	167.26 100 Fm fermium	168.93 101 Md mendelevium	173.05 102 NO nobelium	174.97 103 Lr lawrencium

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.

- 1. (15 points) Draw structures, including stereochemistry where appropriate, for each of the following.
- A. 3-ethylheptane

B. *cis*-1,2-dichlorocyclohexane

C. R, R-2-bromomethylcyclopentane

D. R, S-3,4-dihydroxyhexane

E. *tert*-butylcyclohexane

2. (30 points) Draw the structure of the major product for each reaction. Include stereochemistry where appropriate; you may designate a racemic product by designating "+ enantiomer."

3. (30 points) Write (over the arrow) the reagents and conditions (as appropriate) that will accomplish the following transformations.

4. (40 points) For each reaction below, write a mechanism using the electron-pushing formalism for each step. Classify each as one of the following: free radical chain, $S_N 1$, $S_N 2$, E1 or E2.

4. (Continued)

C. ${}^{\mathrm{t}}\mathrm{BuOCI}, {}^{\mathrm{t}}\mathrm{BuO-O^{\mathrm{t}}\mathrm{Bu}}, \Delta$ Cl Initiation and propagation steps only (ignore termination steps)

5. (30 points) Each of the following short syntheses can be accomplished with chemistry you know in several steps. Show how to do each, providing reactants and reagents/conditions needed.

A. Cyclopentane to cyclopentene

B. Propane to 4-octyne

6. (30 points) Deuterium is an isotope of hydrogen that has an extra neutron in its nucleus. Because it is chemically identical to normal hydrogen but can be detected by its heavier mass, it is often used to help determine reaction mechanisms.

The following deuterated form of 2-bromobutane was reacted under E2 conditions:

A. When (undeuterated) 2-bromobutane reacts under these conditions, one major and two minor products are observed. Draw them.

B. For the deuterated form of 2-bromobutane shown, draw the Newman projection for the most stable rotamer looking down the C2-C3 bond.

C. For the three products you drew in part A, predict whether each will have deuterium or not. Explain the basis of your prediction.

7. (25 points)

A. Match each of the following reaction energy diagrams with one of the reactions shown below. Each reaction is in DMSO solvent.

b. CH₃CH₂Br + NaOCH₂CH₂CH₃

c. $CH_3CH_2C(CH_3)_2CI + Na^+ CH_3CO_2^-$

B. For each of the reactive intermediates indicated in the reaction energy diagrams (labeled A, B, C), draw its likely structure.

C. Draw the product you expect from each reaction.

Bond strengths (kcal/mol):		A values for monosubstituted cyclohexanes (kcal/mol)					
F-F	38		<u>Substituent</u>		A			
Cl-Cl	58		Ме		1.8			
Br-Br	46		Et		1.8			
I-I	36		ⁱ Pr		2.1			
H-F	136		^t Bu		>4.5			
H-Cl	103		0-Me		0.75			
H-Br	87		Cl		0.52			
H-I	71		Br		0.55			
CH₃-H	105		I		0.46			
CH ₃ CH ₂ -H	101							
(CH ₃) ₂ CH-H	98.5							
(CH ₃) ₂ C-H	96.5		R = 1.987 cal/(m)	ol-K)				
CH ₂ -F	110		= 8.314 J/(mol	-K)				
CH ₂ -C1	85			,				
CH ₂ -Br	70		cis-1.3-diaxial	interaction	energies			
CH ₂ -I	57		Me-Me 1.5	cal/mol	5			
CH ₂ CH ₂ -F	111		Me-Br 1.0	cal/mol				
$CH_{2}CH_{2}-C]$	84		(relative to R-H	l diaxial				
CH ₂ CH ₂ -Br	70		interactions)	0.200/12012				
CH ₂ CH ₂ - I	56		,					
(CH ₂) ₂ CH-F	111							
(CH ₂) ₂ CH-Cl	84							
(CH ₂) ₂ CH-Br	71							
(CH ₂) ₂ CH - I	56		Nucleophilicitie	S				
(CH ₂) ₂ C-F	110 (= 10	n k _{rol} for CH₂Br +	 Nu: in CH₂O	H/25°C)			
(CH ₂) ₂ C-C]	85		g kiel ion ongen i		., 20 0)			
$(CH_{2})_{2}C-Br$	71		Ft ₂ P	8.7				
$(CH_{2})_{2}C - T$	55		HS ⁻	8.0				
(013/30 1			T-	7 4				
			CN-	6.7				
Solvent Polariti	es		Et _a N	6.7				
Solvent	Dielectric Const.			6.7				
Hexane	1 9		HO-	6.0				
Diethvl Ether	4.3		Br-	5.8				
Acetic Acid	6.1		N _o -	5.8				
THE	7 6		NHa	5 5				
t-Butyl Alcohol	12 5		(CH ₂) ₂ S	53				
Acetone	21		C1-	4.3				
Fthanol	24.5		CH ² CO ²	4.3				
Nitromethane	36		F ⁻	2.7				
DMSO	47		CH₂OH	0				
Water	78		H ₂ 0	Ō				
			L					