Final Exam Tuesday, March 15, 2022

Form B

Name \qquad KEY \qquad

You may use model kits but no other material with chemical information without instructor approval.

Please do not use any electronic devices except calculators.

*Lanthanide series	$\begin{array}{\|c} \substack{\text { mamaum } \\ \mathrm{sym} \\ \mathrm{La} \\ \hline} \end{array}$	cenm	$\stackrel{59}{\mathrm{Pr}}$	${ }^{\text {Na }}$	Pm	${ }_{\text {Sm }}$	Eu		${ }^{65}$	${ }^{66}$	no	${ }_{\text {athmi }}^{\text {Er }}$	Tm ${ }_{\text {mamm }}^{\text {mam }}$	Yb
**Actinide series			Pa							Cl^{98}	$\begin{aligned} & \text { en } \\ & \text { Es } \end{aligned}$		Md	No
						${ }_{\text {Pu }}$				${ }_{\text {prsi }}$	ES	Fmb	$\underset{\text { cras }}{ }$	Nos9

1. (5 points each; 30 total) Write the expected product(s) for each of the following reactions. Specify stereochemistry where appropriate, and include all expected products.
A.

Racemic
B.

C.

D.

Single diastereomer; racemic
2. (5 points each; 25 total) Write (in the box provided) the reagents and/or conditions needed to accomplish the following transformations.
A.

3. $\mathrm{BH}_{3} \bullet$ THF or $\mathrm{B}_{2} \mathrm{H}_{6}$
4. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$

B.

C.

D.

E.

5. (10 points each; 30 total) Write multistep mechanisms (using the correct electron-pushing formalism, and as many steps as needed) for each of the following transformations. Be sure to draw resonance structures for any intermediate so stabilized.
A.

B.

6. (6 points each box; 36 total) Indicate in the box a characteristic spectral peak for one compound whose presence will distinguish each pair of isomers. For each spectrum (IR, 1H NMR, 13C NMR), you need only list ONE peak for ONE of the two compounds that would be absent in the other
A.

> IR
> I: Ketone $1720 \mathrm{~cm}^{-1}$
> II: OH Broad $3300-$ $3600 \mathrm{~cm}^{-1}$

${ }^{1} \mathrm{H}$ NMR
I: 2-2.5 s 3H + t 2H
II: 3.5 quintet 1 H
${ }^{13} \mathrm{C}$ NMR
I: Ketone 200 ppm
II: C-O 50-60 ppm
B.

5 (10 points each; 30 total) Draw each structure with hydrogens, and predict the ${ }^{1} \mathrm{H}$ NMR spectrum (sketch clearly, or list peaks) of each of the following compounds. Include the spin-spin coupling patterns, but you need not specify J values. Estimate chemical shift to within 1 ppm.
A. 1-Bromobutane

0.903 Ht
1.312 H sextet
1.822 H quintet 3.51 t

B. (4-nitrophenyl)-ethane

8.102 H d
7.312 H d
2.462 H q
1.273 Ht

C. 2-ethylbenzoic acid

11.51 H br
7.98 1H dd
7.231 H td
7.381 H td
7.241 Hdd
2.962 H q
1.273 H t
(note the overlap due
to similar chemical shifts)

6. (11 points each, 22 points total) Identify each compound based on the spectroscopic information provided. For partial credit, include as much of your analysis (DoU, fragments or functional groups) that you can provide.
A.MS parent ion $\mathrm{m} / \mathrm{z}=88 ; \mathrm{M}+1$ peak is 5.5% of the M peak intensity.

IR: $3300-3600 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}$ NMR:
2.0 s, 1H
$1.4 \mathrm{q}, 2 \mathrm{H}$
$1.1 \mathrm{~s}, 6 \mathrm{H}$
$0.8 \mathrm{t}, 3 \mathrm{H}$

(No signals are further downfield.)
MS: 5 carbons in parent ion = 60 mass units. That leaves 28. One O is 16 , leaving 12. Molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}, \mathrm{DoU}=0$

IR: O-H apparent.
${ }^{1} \mathrm{H}$ NMR: 6 H singlet $=2$ identical methyl groups not coupled to anything; $3 \mathrm{Ht}+2 \mathrm{H} q=$ ethyl group.
B. $M S$ parent ion: $m / z=148 . M+1$ peak is 11% of the M peak intensitv. ${ }^{1} \mathrm{H}$ NMR:
$1.30 \mathrm{~d}, 6 \mathrm{H}$;
3.12 septet, 1H;
7.32 d, 2H;
7.75 d, 2H;
$9.84 \mathrm{~s}, 1 \mathrm{H}$.

Expansions:

7.1-7.9 ppm

${ }^{13} \mathrm{C}$ NMR: $24.0,36.2,127.0,129.8,134.0,155.0,191.5 \mathrm{ppm}$.

MS: 10 carbons (= 120 mass units) leaves 28 ; that leaves 1 oxygen (16) and $12 \mathrm{H} . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$, DoU $=5$.
${ }^{1} \mathrm{H}$ NMR: 9.8 indicates an aldehyde; the two doublets in the aromatic region show a paradisubstituted benzene, and the remaining upfield peaks ($6 \mathrm{H} \mathrm{d}+1 \mathrm{H}$ septet) an isopropyl group.
${ }^{13} \mathrm{C}$ NMR confirms the aldehyde, 4 aromatic carbons and the 2 isopropyl carbons.
7. (9 points per box, 27 points total) Provide structures for each empty box. Use your understanding of both reaction chemistry and spectroscopic behavior to arrive at the answers. Include stereochemistry.

${ }^{13} \mathrm{C}$ NMR:
131.5
130.0
126.8
122.5

IR: 3400 (broad), $1736 \mathrm{~cm}^{-1}$;
UV: $\lambda_{\text {max }}=260 \mathrm{~nm}$
MS parent ion region:
192 100\%
193 11.96\%
194 1.36\%

Bond strengths (kcal/mol):	
F-F	38
$\mathrm{Cl}-\mathrm{Cl}$	58
$\mathrm{Br}-\mathrm{Br}$	46
I-I	36
H-F	136
$\mathrm{H}-\mathrm{Cl}$	103
$\mathrm{H}-\mathrm{Br}$	87
$\mathrm{H}-\mathrm{I}$	71
$\mathrm{CH}_{3}-\mathrm{H}$	105
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}$	101
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{H}$	98.5
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{H}$	96.5
$\mathrm{CH}_{3}-\mathrm{F}$	110
$\mathrm{CH}_{3}-\mathrm{Cl}$	85
$\mathrm{CH}_{3}-\mathrm{Br}$	70
$\mathrm{CH}_{3}-\mathrm{I}$	57
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{F}$	111
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$	84
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}$	70
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{I}$	56
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{F}$	111
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}$	84
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Br}$	71
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{I}$	56
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{F}$	110
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Cl}$	85
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}$	71
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$	55

Typical Heats of Hydrogenation

Table 11-4

Characteristic Infrared Stretching Wavenumber Ranges of Organic Molecules

Table 10-2 Typical Hydrogen Chemical Shifts in Organic Molecules

Table 10-6 Typical ${ }^{13} \mathrm{C}$ NMR Chemical Shifts

