Final Exam	Tuesday, March 15, 2022
Form B	
NameKEY	

CH 335

You may use model kits but no other material with chemical information without instructor approval.

Please do not use any electronic devices except calculators.

hydrogen 1																	9992 IS	^{hellum} 2 He
1.0079																		4.0026
lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
1.1	Ro												R	C	N	0	F	No
6.941	9.0122												10.911	12.011	14.007	15.999	19.009	20.190
sodium	magnesium												aluminium	silicon	phosphorus	sulfur	chlorine	argon
11	12												13	14	15	16	17	18
Na	Ma												A	Si	P	S	C	Ar
22.990	24,305												26.982	28.086	30.974	32.065	35.453	39.948
potassium	calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		SC		V	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
K 39.098	Ca 40.078		SC 44.956	47.867	V 50.942	51.996	54.938	⊢e 55.845	58,933	NI 58.693	63,546	2n 65.39	Ga 69.723	Ge 72.61	AS 74.922	Se 78.96	Br 79.904	83.80
39.098 rubidium	Ca 40.078 strontium 38		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63,546 silver	2n 65.39 cadmium	Ga 69.723 Indium	72.61 tin 50	AS 74.922 antimony 51	50 78.96 tellurium 52	79.904 Iodine	83.80 xenon
8 39.098 rubidium 37	Ca 40.078 strontium 38		44.956 yttrium 39	47.867 zirconium 40	50.942 niobium 41	51.996 molybdenum 42	54.938 technetium 43	55.845 ruthenium 44	58.933 rhodium 45	58,693 palladium 46	63,546 silver 47	Zn 65.39 cadmium 48	Ga 69.723 Indium 49	Ge 72.61 tin 50	AS 74.922 antimony 51	50 78.96 tellurium 52	79.904 Iodine 53	83.80 xenon 54
8 39.098 rubidium 37 Rb	Ca 40.078 strontium 38 Sr		SC 44.956 yttrium 39 Y	47,867 zirconium 40 Zr	V 50.942 niobium 41 Nb	Cr 51.996 molybdenum 42 Mo	Mn 54.938 technetium 43 TC	Fe 55.845 ruthenium 44 Ru	Co 58.933 rhodium 45 Rh	NI 58,693 palladium 46 Pd	Cu 63,546 silver 47 Ag	Zn 65.39 cadmium 48 Cd	Ga 69.723 Indium 49 In	Ge 72.61 tin 50 Sn	As 74.922 antimony 51 Sb	Se 78.96 teturium 52 Te	80 79.904 Iodine 53	кг ^{83,80} хепоп 54 Хе
K 39.098 rubidium 37 Rb 85.468	Ca 40.078 strontium 38 Sr 87.62		44.956 yttrium 39 Y 88.906	47.867 zirconium 40 Zr 91.224	50.942 niobium 41 Nb 92.906	51.996 molybdenum 42 Mo 95.94	Mn 54.938 technetium 43 Tc [98]	Fe 55.845 ruthenium 44 Ru 101.07	Co 58,933 rhodium 45 Rh 102,91	NI 58,693 palladium 46 Pd 106,42	63,546 silver 47 Ag 107.87	2n 65.39 cadmium 48 Cd 112.41	Ga 69.723 Indium 49 In 114.82	Ge 72.61 tin 50 Sn 118.71	As 74.922 antimony 51 Sb 121.76	52 127.60	79.904 Iodine 53 I 126.90	83.80 xenon 54 Xe 131.29
K 39.098 rubidium 37 Rb 85.468 caesium 55	Ca 40.078 strontium 38 Sr 87.62 barium 56	57-70	44.956 yttrium 39 Y 88.906 lutetium 71	47.867 zirconium 40 Zr 91.224 hafnium 72	V 50.942 niobium 41 Nb 92.906 tantalum 73	51.996 molybdenum 42 Mo 95.94 tungsten 74	Mn 54.938 technetium 43 TC [98] rhenium 75	Fe 55.845 ruthenium 44 Ru 101.07 osmium 76	Co 58,933 rhodium 45 Rh 102.91 irdium 77	NI 58.693 palladium 46 Pd 106.42 platinum 78	63,546 silver 47 Ag 107,87 gold 79	2n 65.39 cadmium 48 Cd 112.41 mercury 80	Ga 69.723 Indium 49 In 114.82 thallum 81	Ge 72.61 tin 50 Sn 118.71 lead 82	As 74.922 antimony 51 Sb 121.76 bismuth 83	52 127.60 polonium 84	Br 79.904 Iodine 53 I 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
K 39.098 rubidium 37 Rb 85.468 caesium 55	Ca 40.078 strontium 38 Sr 87.62 barium 56	57-70	SC 44.956 yttrium 39 Y 88.906 lutetium 71	47.867 zirconium 40 Zr 91.224 hafnium 72	V 50.942 niobium 41 Nb 92.906 tantalum 73	51.996 molybdenum 42 Mo 95.94 tungsten 74	Mn 54.938 technetium 43 Tc 98 rhenium 75 Do	Fe 55.845 ruthenium 44 Ru 101.07 osmium 76	CO 58,933 rhodlum 45 Rh 102.91 iridlum 77	Ni 58,693 palladium 46 Pd 106.42 platinum 78	CU ^{63,546} ^{8]tver} 47 Ag ^{107,87} ^{gold} 79	Zn 65.39 cadmium 48 Cd 112.41 mercury 80	Ga 69.723 Indum 49 In 114.82 thallow 81 T	Ge 72.61 lin 50 Sn 118.71 lead 82	AS 74.922 antimony 51 Sb 121.76 bismuth 83	Se 78.96 teturium 52 Te 127.60 potonium 84	Br 79.904 1010e 53 1 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
к 39.098 rubidium 37 Rb 85.468 саезіит 55 Cs	Ca 40.078 strontlum 38 Sr 87.62 barlum 56 Ba	57-70 ★	Sc 44.956 yttrium 39 Y 88.906 lutetium 71 Lu	11 47.867 zirconium 40 Zr 91.224 hafnium 72 Hf	v 50.942 niobium 41 Nb 92.906 tantalum 73 Ta	Cr 51.996 molybdenum 42 Mo 95.94 tungsten 74 W	Min 54,938 technetium 43 Tc [98] thenium 75 Re	Fe 55.845 ruthenium 44 Ru 101.07 osmium 76 Os	CO 58.933 rhodium 45 Rh 102.91 iridium 77 Ir	NI 58,693 palladium 46 Pd 106.42 platinum 78 Pt	63,546 silver 47 Ag 107.87 gold 79 Au	Zn 65.39 cadmium 48 Cd 112.41 mercury 80 Hg	Ga 69,723 Indium 49 In 114.82 thailium 81 TI	Ge 72.61 tin 50 Sn 118.71 lead 82 Pb	As 74.922 antimony 51 Sb 121.76 bismuth 83 Bi	Se 78.96 tellurlum 52 Te 127.60 potenium 84 PO	Br 79,904 Iodine 53 I 126.90 astatine 85 At	кг ^{83,80} хепоп 54 Хе 131.29 гадоп 86 Rn
K 39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 fancture	Ca 40.078 strontlum 38 Sr 87.62 barium 56 Ba 137.33 rdflum	57-70 X	Sc 44.956 yttrium 39 Y 88.906 lutetium 71 Luu 174.97 burgeneium	11 47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49	V 50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 ditentum	Cr 51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 resolventium	Min 54,938 technetium 43 Tc [98] rhenium 75 Re 186,21 bohtum	Fe 55.845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23 bocium	CO 58.933 rhodium 45 Rh 102.91 idilum 77 Ir 192.22 mellectur	NI 58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08	CU 63,546 silver 47 Ag 107.87 gold 79 Au 196.97	Zn 65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 200.59 200.59	Ga 69,723 Indium 49 In 114.82 thailium 81 TI 204.38	Ge 72.61 tin 50 Sn 118.71 lead 82 Pb 207.2	As 74.922 antimony 51 Sb 121.76 bismuth 83 Bi 208.98	Se 78.96 telurium 52 Te 127.60 potonium 84 PO [209]	Br 79,904 Iodine 53 I 126.90 astatine 85 At [210]	кг 83.80 хепоп 54 Хее 131.29 гадоп 86 Rn [222]
K 39,098 rubidium 37 Rb 85,468 caesium 55 CS 132,91 francium 87	Ca 40,078 strontium 38 Sr 87,62 barlum 56 Ba 137,33 radium 88	57-70 ★ 89-102	Sc 44.956 yttrium 39 Y 88.906 luteitium 71 Lu 174.97 lawrencium 103	11 47.867 zirconium 40 Zr 91.224 hatnium 72 Hf 178.49 rutherfordium 104	V 50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105	Cr 51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium 106	Min 54.938 technetium 43 Tc [98] rhenium 75 Re 186.21 bohnium 107	Fe 55.845 ruthenium 44 Ruu 101.07 osmium 76 OS 190.23 hassium 108	CC0 58,933 rhodlum 45 Rh 102.91 iddum 77 Ir 192.22 meitnenum 109	NI 58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	Cu 63,546 silver 47 Ag 107.87 gold 79 Au 196.97 ununnium 111	Zn 65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununblum 112	Ga 69.723 Indium 49 In 114.82 thailium 81 TI 204.38	Ge 72.61 Un 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114	As 74.922 antimony 51 Sb 121.76 bismuth 83 Bi 208.98	Se 78.96 telurium 52 Te 127.60 potonium 84 PO [209]	Br 79.904 Iodine 53 I 126.90 astatine 85 At [210]	83.80 xenon 54 Xe 131.29 radon 86 Rn [222]
K 39,098 rubidium 37 Rb 85,468 caesium 55 Cs 132,91 francium 87 Er	Ca 40,078 strontium 38 Sr 87,62 barlum 56 Ba 137,33 radium 88 Ba	57-70 ★ 89-102 ★ ★	Sc 44.956 yttrium 39 Y 88.906 lutefilum 71 Luu 174.97 lawrencium 103 L F	11 47.867 zirconium 40 Zr 91.224 hatnium 72 Hf 178.49 rutherfordium 104 Df	V 50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105 Db	Cr 51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium 106	Min 54.938 technetium 43 Tc [98] rhenium 75 Re 186.21 bohnium 107 Pb	Fe 55.845 ruthenium 44 Ru 101.07 osmium 76 OS 190.23 hassium 108 UC	CO 58,933 rhodium 45 Rh 102.91 idium 77 Ir 192.22 meitnerium 109 M#	NI 58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	Cu 63,546 silver 47 Ag 107.87 gold 79 Au 196.97 ununnium 111	Zn 65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	Ga 69.723 Indium 49 In 114.82 thailium 81 TI 204.38	Ge 72.61 Un 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114	As 74.922 antimony 51 Sb 121.76 bismuth 83 Bi 208.98	Se 78.96 telurium 52 Te 127.60 potonium 84 Po [209]	Br 79.904 Iodine 53 I 126.90 astatine 85 At [210]	83.80 xenon 54 Xe 131.29 radon 86 Rn [222]
K 39,098 rubidium 37 Rb 85,468 caesilum 55 CS 132,91 francium 87 Fr	Ca 40.078 strontum 38 Sr 87.62 barlum 56 Ba 137.33 radium 88 Ra	57-70 ★ 89-102 ★ ★	Sc 44.956 yttr/um 39 Y 88.906 lutefilum 71 Lu 174.97 lawrencium 103 Lr	II 47.867 zirconium 40 Zr 91.224 hatnium 72 Hf 178.49 rutherfordium 104 Rf	V 50.942 niobum 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105 Db	Cr 51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium 106 Sg	Mn 54,938 Itechnetium 43 TC [98] rhenium 75 Re 186,21 bohnium 107 Bh	Fe 55.845 ruthenium 44 Ru 101.07 osmium 76 OS 190.23 hassium 108 HS	CC0 58,933 rhocdum 45 Rh 102.91 irdlum 77 Ir 192.22 meltnentum 109 Mt	NI 58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110 Uun	Cu 63,546 silver 47 Ag 107.87 gold 79 Au 196,97 unununium 111 Uuuu	Zn 65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununblum 112 Uub	Ga 69.723 Indium 49 In 114.82 thailium 81 TI 204.38	Ge 72.61 III 50 Sn 118.71 Iead 82 Pb 207.2 ununquadium 114 Uuq	As 74.922 antimory 51 Sb 121.76 bismuth 83 Bi 208.98	Se 78.96 telurium 52 Te 127.60 potonium 84 Po [209]	Br 79.904 iodine 53 I 126.90 astatine 85 At [210]	КГ 83.80 хелоп 54 Хе 131.29 гаdon 86 Rn [222]

*Lanthanida series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthannue series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

HBr Racemic Α. Br Cl₂, CH₃OH Anti addition; racemic Β. OCH3 ĒΙ 1. O₃ C. 2. Me₂S Δ О Single diastereomer; Н racemic D. Н റ Br₂, FeBr₃ E. Br F. Br cat. Pd(OAc)₂, PPh_3

1. (5 points each; 30 total) Write the expected product(s) for each of the following reactions. Specify stereochemistry where appropriate, and include all expected products.

2. (5 points each; 25 total) Write (in the box provided) the reagents and/or conditions needed to accomplish the following transformations.

3. (10 points each; 30 total) Write multistep mechanisms (using the correct electron-pushing formalism, and as many steps as needed) for each of the following transformations. Be sure to draw resonance structures for any intermediate so stabilized.

4. (6 points each box; 36 total) Indicate in the box a characteristic spectral peak for one compound whose presence will distinguish each pair of isomers. For each spectrum (IR, 1H NMR, 13C NMR), you need only list ONE peak for ONE of the two compounds that would be absent in the other

Α.

5 (10 points each; 30 total) Draw each structure with hydrogens, and predict the ¹H NMR spectrum (sketch clearly, or list peaks) of each of the following compounds. Include the spin-spin coupling patterns, but you need not specify J values. Estimate chemical shift to within 1 ppm.

0.90 3H t 1.31 2H sextet 1.82 2H quintet 3.51 t

B. (4-nitrophenyl)-ethane

C. 2-ethylbenzoic acid

6. (11 points each, 22 points total) Identify each compound based on the spectroscopic information provided. For partial credit, include as much of your analysis (DoU, fragments or functional groups) that you can provide.

A.MS parent ion m/z = 88; M+1 peak is 5.5% of the M peak intensity.

IR: 3300-3600 cm⁻¹.

2.0 s, 1H

(No signals are further downfield.)

MS: 5 carbons in parent ion = 60 mass units. That leaves 28. One O is 16, leaving 12. Molecular formula $C_5H_{12}O$, DoU = 0

IR: O-H apparent.

¹H NMR: 6H singlet = 2 identical methyl groups not coupled to anything; 3H t + 2H q = ethyl group.

B. MS parent ion: m/z = 148. M+1 peak is 11% of the M peak intensity.

Expansions:

7.1-7.9 ppm

0

¹³C NMR: 24.0, 36.2, 127.0, 129.8, 134.0, 155.0, 191.5 ppm.

H MS: 10 carbons (= 120 mass units) leaves 28; that leaves 1 oxygen (16) and 12 H. $C_{10}H_{12}O$, DoU = 5.

¹H NMR: 9.8 indicates an aldehyde; the two doublets in the aromatic region show a paradisubstituted benzene, and the remaining upfield peaks (6H d + 1H septet) an isopropyl group.

¹³C NMR confirms the aldehyde, 4 aromatic carbons and the 2 isopropyl carbons.

7. (9 points per box, 27 points total) Provide structures for each empty box. Use your understanding of both reaction chemistry and spectroscopic behavior to arrive at the answers. Include stereochemistry.

Bond strengths (kcal/mol):

F-F	38
CI-CI	58
Br-Br	46
1-1	36
H-F	136
H-Cl	103
H-Br	87
H-I	71
CH₃-H	105
CH₃CH₂-H	101
(CH ₃) ₂ CH-H	98.5
(CH₃)₃C-H	96.5
CH₃-F	110
CH₃-CI	85
CH₃-Br	70
CH ₃ -I	57
CH₃CH₂-F	111
CH ₃ CH ₂ -Cl	84
CH₃CH₂-Br	70
CH ₃ CH ₂ -I	56
(CH ₃) ₂ CH-F	111
(CH ₃) ₂ CH-Cl	84
(CH ₃) ₂ CH-Br	71
(CH ₃) ₂ CH-I	56
(CH₃)₃C-F	110
(CH₃)₃C-Cl	85
(CH₃)₃C-Br	71
(CH ₃) ₃ C-I	55

Table 10-2 Typical Hydrogen Chemical Shifts in Org	ganic Molecules				
Type of hydrogen ^a		Chemical shift δ in ppm			
Primary alkyl, RCH ₃	0.8-1.0				
Secondary alkyl, RCH ₂ R'	1.2–1.4	Alkane and alkane-like hydrogens			
Tertiary alkyl, R ₃ CH	1.4–1.7 J				
CH ₃					
Allylic (next to a double bond), $R_2C = C$	1.6-1.9				
'R'	l	II. I want to support the second second second			
Benzylic (next to a benzene ring), ArCH ₂ R	2.2-2.5	Hydrogens adjacent to unsaturated functional groups			
Ketone, RCCH ₃	2.1-2.6				
0					
Alkyne, $RC \equiv CH$	1.7-3.1				
Chloroalkane, RCH_2Cl	3.6-3.8				
Bromoalkane, RCH ₂ Br	3.4-3.6				
Iodoalkane, RCH ₂ I	3.1–3.3	Hydrogens adjacent to electronegative atoms			
Ether, RCH_2OR'	3.3–3.9				
Alcohol, RCH ₂ OH	3.3-4.0				
Terminal alkene, $R_2C = CH_2$	4.6–5.0	Alkene hydrogens			
Internal alkene, $R_2C = CH$	5.2-5.7				
Aromatic, ArH	6.0-9.5				
Aldehyde, RCH	9.5-9.9				
0					
Alcoholic hydroxy, ROH	0.5-5.0	(variable)			
Thiol, RSH	0.5-5.0	(variable)			
Amine, RNH_2	0.5-5.0	(variable)			

 a R, R', alkyl groups; Ar, aromatic group (not argon).

