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Abstract

We consider the problem of genetic association testing of a binary trait in a sample that con-
tains related individuals, where we adjust for relevant covariates and allow for missing data.
We propose CERAMIC, an estimating equation approach that can be viewed as a hybrid of
logistic regression and linear mixed-effects model (LMM) approaches. CERAMIC extends
the recently proposed CARAT method to allow samples with related individuals and to
incorporate partially missing data. In simulations, we show that CERAMIC outperforms
existing LMM and generalized LMM approaches, maintaining high power and correct type
1 error across a wider range of scenarios. CERAMIC results in a particularly large power
increase over existing methods when the sample includes related individuals with some
missing data (e.g., when some individuals with phenotype and covariate information have
missing genotype), because CERAMIC is able to make use of the relationship information
to incorporate partially missing data in the analysis while correcting for dependence.
Because CERAMIC is based on a retrospective analysis, it is robust to misspecification of
the phenotype model, resulting in better control of type 1 error and higher power than that
of prospective methods, such as GMMAT, when the phenotype model is misspecified.
CERAMIC is computationally efficient for genomewide analysis in samples of related indi-
viduals of almost any configuration, including small families, unrelated individuals and even
large, complex pedigrees. We apply CERAMIC to data on type 2 diabetes (T2D) from the
Framingham Heart Study. In a genome scan, 9 of the 10 smallest CERAMIC p-values
occur in or near either known T2D susceptibility loci or plausible candidates, verifying that
CERAMIC is able to home in on the important loci in a genome scan.
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Author Summary

Case-control association testing has proven to be useful for identification of genetic vari-
ants that affect susceptibility to disease. One can expect to gain power for detecting such
variants by including relevant covariates in the analysis, by accounting for any relatedness
of sampled individuals, and by making use of partial information in the data. For analysis
of continuously-varying traits, variations on linear mixed-model (LMM) approaches have
proven effective at achieving some of these goals. However, for case-control or binary trait
mapping, there remain significant challenges. Direct application of LMM approaches to
binary traits suffers from power loss when covariate effects are strong, and existing gener-
alized LMM approaches can perform poorly in the presence of trait model misspecifica-
tion and partially missing data. We propose CERAMIC, a method for binary trait
mapping, which is computationally feasible for large genome-wide studies, and which
gains power over previous approaches by improved trait modeling, retrospective assess-
ment of significance, accounting for sample structure, and making use of partially missing
data. We illustrate this approach in genome-wide association mapping of type 2 diabetes
in data from the Framingham Heart Study.

Introduction

In genetic association analysis of a binary trait, such as presence or absence of a disease, it can
be useful to properly control for relevant covariates. Inclusion of environmental risk factors in
the analysis has the potential to increase statistical power by reducing phenotypic noise, and
adjustment for confounding factors can provide some protection against spurious association
[1, 2]. For a sample of independent individuals, logistic regression provides a natural approach.
However, it is common for association studies to contain some related individuals. This can
arise in isolated populations, or by chance in large samples in outbred populations, or, for
example, when families collected for linkage studies are included in association analysis. In the
presence of related individuals, it is important to model the familial correlation in the sample
appropriately to avoid inflation of the significance of association [3] and to improve power [4].
Furthermore, if missing data occur in samples with related individuals (for instance, when
some individuals are phenotyped but not genotyped or vice versa), additional power can often
be obtained by appropriately incorporating partial information [5].

It is of interest to develop an association mapping method for binary traits that addresses the
aforementioned challenges, yet has computational time complexity feasible for current scales of
genome-wide association studies (GWASs). The classical transmission disequilibrium test
(TDT) [6] and the FBAT method [7] are applicable only to family-based designs. For general
case-control designs with distantly-related individuals, methods [8-10] based on linear mixed
models (LMM) are commonly used in recent literature. However, such methods are specifically
designed for quantitative traits, and, although they can be applied to case-control data, they can
suffer from power loss due to failure to capture the binary nature of the outcome. More recent
work [11, 12] specifically addresses the analysis of ascertained case-control samples with low
levels of relatedness. To model binary traits in samples with high levels of relatedness, several
authors [13-15] have proposed methods based on the generalized linear mixed model (GLMM)
statistical framework, which extends the classical logistic regression model by including genetic
random effects on the logit scale. Of these, only GMMAT [15] has a computational speed that is
teasible for large data sets. For samples with unknown population structure, Jiang et al. [16]
recently proposed CARAT, a binary-trait genome-wide association testing approach, which
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adjusts for relevant covariates on a logistic, instead of linear, scale, and which incorporates an
additive polygenic effect within a computationally efficient quasi-likelihood framework. How-
ever, none of the above methods exploit information contained in partially missing data. MQLS
[4] is a binary-trait association testing method that allows related individuals in the sample and
that makes full use of the relationship information in order to incorporate partially missing
data, but it does not adjust for covariates or for additive polygenic effects. MASTOR, [17] a
more recent association method for samples with related individuals, is able to use information
in partially missing data by applying a retrospective analysis to a LMM. Like other LMM
approaches, it is designed for quantitative traits, although it can be applied to binary traits.

We consider a somewhat different setting from that addressed by CARAT and GMMAT.
We assume a sample that includes at least some closely-related individuals, for whom the pedi-
gree structure is assumed known. We also want to allow for the possibility of incorporating
partially missing data, which is not possible with CARAT or GMMAT. We propose CERAMIC
(Case-control Efficient Related-individual Association Mapping Incorporating Covariates), a
mixed-model, binary-trait association testing method, which adjusts for relevant covariates
and efficiently incorporates missing data to enhance power. The mean and covariance struc-
ture of CERAMIC is tailored for binary traits, and it would therefore be expected to outperform
LMM methods such as EMMAX, [8] GEMMA [10] and MASTOR. By using a quasi-likelihood
framework, CERAMIC achieves computational efficiency for genome-wide analysis. When
assessing significance, we modify the genotypic model used by CARAT to allow for possible
correlation between the genotype and the covariates, which is of particular relevance when, for
example, ancestry-informative covariates are included to control for population stratification.
As a further development over CARAT and a further advantage over prospective LMM and
GLMM methods (e.g. GMMAT, EMMAX, GEMMA), CERAMIC effectively exploits partially
missing data to improve power by incorporating data on individuals with missing genotypes
who have a genotyped relative. Our method can also be considered a generalization of MQLS
to allow adjustment for covariates and additive polygenic effects. Unlike the family-based,
covariate-adjusted TDT test, CERAMIC can be applied to completely general samples of
related and unrelated individuals, provided the genealogy is known.

Major features of CERAMIC are summarized as follows: (1) it is applicable to essentially
arbitrary combinations of related and unrelated individuals, including small outbred pedigrees
and unrelated individuals, as well as large, complex inbred pedigrees; (2) it incorporates infor-
mation on individuals with partially missing data while correctly accounting for dependence;
(3) it corrects binary phenotypes for both covariates and additive polygenic effects using a
model that exploits the binary nature of the trait; and (4) it is computationally feasible for cur-
rent association studies. For comparison, we have developed two other retrospective tests that
also have features (1), (2) and (4) above, but which do not model additive polygenic effects:
MQLS-LOG, which uses a logistic approach to adjust binary phenotypes only for covariates, not
for polygenic effects,and MQLS-LIN, which uses an ordinary least-squares regression approach
to do the same. We conduct simulation studies to assess the type 1 error and power of our meth-
ods, CERAMIC, MQLS-LOG and MQLS-LIN, and to compare them to previously reported
methods, MASTOR, EMMAX, GEMMA, CARAT and GMMAT. Finally, we apply CERAMIC
to the analysis of type 2 diabetes (T2D) data from the Framingham Heart Study (FHS).

Materials and Methods

We consider a binary trait measured on a sample of # individuals. Denote the phenotype by a
vector, Y, of length n, where the ith element, Y, is the value of the phenotype for individual i.
Suppose we also observe k — 1 > 0 covariates, encoded in a design matrix, X, of dimension
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n x k, where an intercept (i.e., a column of ones) is always included in X in addition to the k — 1
non-trivial covariates. Let X; denote the column vector of covariate values for individual i (so
that X is the ith row of the matrix X). Let G denote the vector of genotypes for the n individu-
als at a tested biallelic variant, where G; = 0, 1, or 2 denotes minor allele count of the ith indi-
vidual at the variant. In the following sub-sections, we first briefly review the CARAT method
before presenting our CERAMIC approach.

A brief overview of CARAT

CARAT [16] was developed for binary trait association mapping in samples that are possibly
subject to unknown population structure, assuming that genome-wide data are available.
CARAT is based on a quasi-likelihood model in which only the conditional mean and variance
of Y given genotype and covariate information are specified. The conditional mean is given by

B(YJX,6) = i, with logg™ - =Xp+ Gy, i=1,0 o (1)

i

where B is a k-dimensional vector of unknown covariate effects, and y is the unknown scalar
association parameter. The conditional variance is given by

Q = Var(Y |X,G) = I'?EZI'? with £ = ¢® + (1 - 9, (2)

where I is an n x n diagonal matrix with ith diagonal element equal to y;(1 — y;), Iisann x n
identity matrix, @ is a genetic relationship matrix, and 0 < £ < 1 is an unknown scalar parame-
ter measuring the relative importance of additive polygenic vs. i.i.d. error variance in explaining
trait variability. The appearance of the terms '/ in the formula for Q in Eq (2) ensures that,
for an outbred individual , the relationship between the conditional mean and variance given
by Var(Y|X, G) = ui(1 — y;) holds, as is necessary for a binary random variable. In CARAT, ®
is taken to be an empirical genetic relationship matrix calculated from genome-wide data. The
unknown parameter for CARAT is (7, B, £), where, for association analysis, y is the main
parameter of interest, while (8, £) is typically considered a nuisance parameter.

To detect association between the phenotype and the SNP, Hy: ¥ = 0 is tested against H;:
y # 0. To form the CARAT test statistic, we first obtain the null estimate, (0, ﬁo, ¢ ,) of the
parameter (7, B, £) by iteratively solving a system of estimating equations under the constraint
¥ = 0. The quasi-score estimating equation for f is given by

X'’ A(Y —p) =0, (3)
where p = u(y, B) = (1, - - -» )" The estimating equation for £ is given by
(Y —p)' T2 (@ — DZ'T V(Y — ) = trace(Z 7 (® — I)). (4)

Then (B,, &,) is defined to be the solution to the system consisting of Eqs (3) and (4), with y
constrained to be 0. The CARAT test is based on the quasi-score statistic,

U= G5 0 Y — ), 5)

where ji,, £, and ', are g, £ and T evaluated at (7, 8, &) = (0, B,, EU). (For additional details
on quasi-score tests and their use in statistical genetics see references [18] and [19]).

To assess the significance of the association test, CARAT takes a retrospective approach, in
which it is assumed that, under the null hypothesis of no association,

E\(G|X,Y) = 2p1, and Var (G|X,Y) = 0. ®, (6)
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where 0 < p < 1is the unknown allele frequency of the variant of interest, g7 > 0 is an
unknown parameter, and the subscript “0” indicates that expectation and variance are taken
under the null hypothesis. CARAT estimates o using 6, = 2p(1 — p), wherep = 0.5 x G is
the sample average estimator of p. The CARAT test statistic can then be defined by

(z'6)’

CARAT = = Ty
0'57 -Z ®Z

where Z = T2 T, (Y — ). (7)

Significance of association is assessed by comparing the test statistic to a y? random variable.

In addition to testing for association, one can also obtain an estimate of the full parameter
(%, B, &) by solving a system consisting of Eqs (3) and (4) and the following quasi-score estimat-
ing equation for y:

GTV’Z'T (Y —p) =0. (8)

The system consisting of Eqs (3), (4) and (8) can be solved iteratively to obtain the estimated
parameter vector.

CERAMIC test with complete data

Consider a sample of n individuals who are arbitrarily related, with the pedigree information
assumed to be known. (Note that individuals who are unrelated to anyone else in the sample
are also allowed.) Let the kinship matrix derived from the pedigree information be given by

L+h 20, ... 2¢,
2,, 1+4h, ... 29,
20, 20,, ... 14+h,

where ¢; ; is the kinship coefficient between individuals i and j, and k; is the inbreeding coeffi-
cient of individual i.

To model the binary trait variable Y, we adopt a quasi-likelihood framework similar to that
of CARAT, in which the mean structure is given by Eq (1). In the conditional variance of Y
given X and G, shown in Eq (2), we could use either the empirical genetic relationship matrix
as in CARAT or the pedigree-based kinship matrix defined in Eq (9) as the genetic relationship
matrix, @. As we will show in the next subsection, we use the pedigree-based kinship matrix as
part of our approach to extract additional information for association from partially missing
genotype data on related individuals, so it is convenient (although not necessary) to also use
the pedigree-based kinship matrix for ® in Eq (2). This would also eliminate the need for
genome-wide data.

In the complete data case (i.e., when X, G, and Y are fully observed), to detect association
between the binary phenotype and the genetic variant, we first obtain the quasi-score statistic
defined as in Eq (5), but with the empirical genetic relationship matrix replaced by the kinship
matrix calculated from the pedigree. Three commonly-used approaches for assessment of sig-
nificance of an association test in genetic analysis can be described as (1) prospective, in which
the conditional distribution of the phenotype given genotype and covariates is considered, (2)
retrospective, in which the conditional distribution of the genotype given phenotype and
covariates is considered, and (3) permutation-based. For CERAMIC, we take a retrospective
approach similar to that of CARAT. One advantage of the retrospective approach is that it is
robust to misspecification of the phenotype model, because correct type 1 error of CERAMIC
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relies only on the null conditional mean and variance of the vector of genotypes. Another
advantage is that it allows for a natural way to incorporate information on individuals with
missing genotypes, as described in the next subsection.

For the retrospective analysis, we make the following modeling assumptions about the dis-
tribution of G conditional on Y and X under the null hypothesis:

E,(G|Y,X) = Xa, and (10)

Var (G|Y,X) = 0. ®, (11)

where @ is an unknown k-dimensional vector of coefficients, 67, > 0 is an unknown parameter,
and @ is the known kinship matrix defined in Eq (9). The null mean assumption in Eq (10)
says that, under the null hypothesis of no association between genotype and phenotype, the
genotype is permitted to be linearly related to the covariates, or it can be unrelated to the covar-
iates. The possibility that G could be linearly related to the covariates is particularly relevant,
for example, when ancestry vectors are used as covariates to account for population structure
(e.g. M.P. Conomos, A.P. Reiner, M.S. McPeek and T.A. Thornton, under review). Then the
null mean assumption allows, e.g., for different sub-populations to have different allele fre-
quencies. The null variance assumption in Eq (11) is a version of the standard variance rela-
tionship that holds, for example, under Mendelian inheritance in a single population. Here,
however, we do not require 67, = 2p(1 — p), where p is the allele frequency at the variant of
interest, which would hold under Hardy-Weinberg equilibrium. Instead we use a more robust
variance estimator [17] given by

1
62 = ——G"PG, 12
G n— k ( )
where P=0 ' -0 ' X(XT 0! X)"! X" @ L. Note that 62 is equivalent to the residual mean
square error for the generalized linear regression of G on X, with covariance matrix propor-
tional to @. The CERAMIC test statistic in the complete data case is then given by

U2 7'G)’
CERAMIC, = —— _ (z6

= , 13
Var (U,|Y,X) 6%Z'®Z (13)

where Z is defined in Eq (7) and is referred to as the vector of transformed null phenotypic

« »

residuals. The subscript “c” on CERAMIC, stands for “complete data” Under suitable regular-
ity conditions, significance of association could then be assessed by comparing CERAMIC, to a
2 random variable.

Parameter estimation

In addition to testing for association, one can also obtain an estimate of the full parameter
(7, B, &) by iteratively solving the system consisting of Eqs (3), (4) and (8). Let (7, ﬁ, 2) denote
the estimator obtained as the solution of this system, and let I" and £ denote I" and Z, respec-

tively, evaluated at (7, 8, &). Then the estimated asymptotic covariance matrix for (, 87)" is
given by
Cov((7,87)") = (X"EVETEX) (14)

where we define X = (G, X). The approximate standard errors for the elements of (7, 87) are
obtained as the square roots of the corresponding diagonal elements of the matrix in Eq (14).
We note that the validity of Eq (14) as an estimator of the covariance relies on the validity of
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the modeling assumptions of Eqs (1) and (2) and on the sample size, n, being large. Calculation

of the standard error for the estimator, &, of the variance parameter would require higher-
order (i.e., third and fourth) moment assumptions on Y, so it is not available in our approach,
in which we need only specify the mean and variance structure of the phenotype.

CERAMIC test with partially missing data

First, we describe our notation with regard to missing data. Let N denote the full set of n sampled
individuals. For a given genetic variant to be tested, let R C N denote the subset of individuals
with non-missing genotype at that variant, and let r = |R| denote the number of such individuals.
We define G to be the r x 1 sub-vector of G that contains the genotypes for the individuals in
set R, and we define ®p to be the r x r submatrix of @ consisting of the rows and columns corre-
sponding to the individuals in set R. We can partition the set R into two disjoint subsets, U and
V, where U denotes the subset of individuals with non-missing genotype at the tested variant
who also have complete phenotype and covariate data, and V denotes the subset of individuals
with non-missing genotype at the tested variant who are missing either the phenotype or one or
more covariates. We let u = |U|and v=|V|,and wehave R=UU V,UNV=0andr=u +v.

We let S denote the set consisting of the remaining s = n — r individuals not in the set R, i.e.,
S = NN R* denotes the subset of individuals who have missing genotype data at the variant of
interest. There are certain categories of individuals who do not make a contribution to our
association analysis, and we assume that these have already been deleted from the set S (and
from N). To be retained in S, individuals with missing genotype are required to have non-miss-
ing phenotype and covariate information, and, in addition, to satisfy at least one of the follow-
ing two conditions: (1) the individual has a genotyped relative; or (2) the individual is in the
same pedigree with an individual with non-missing phenotype and covariates who either has
non-missing genotype or has a relative with non-missing genotype at the tested variant. Let
W=UUS, so Wis the set of w = u + s individuals remaining in N who have complete pheno-
type and covariate information. Notice that the sets N, R, U, V, S, and W can, in principle, vary
across tested variants that have different patterns of genotypic missingness. This point is dis-
cussed in more detail in the subsection Some computational considerations for CERAMIC.

To form the CERAMIC test statistic in the case of partially missing data, we propose to use
the genotype data for the individuals in the set R combined with the phenotype and covariate
data for the individuals in the set W. As in the case of complete data, we first obtain an estima-
tor of the phenotypic nuisance parameter, (8, £), under the null hypothesis, Hy: ¥ = 0. This esti-
mator, which we call (8,,,,, EWU), is obtained by solving Eqs (3) and (4) with y set to 0, where all
vectors and matrices in Eqs (3) and (4) are restricted to contain only those individuals in set
W. We then let Zyy, denote the vector of transformed null phenotypic residuals for the set W,
where

Z, =T\LIT )2 (Y, —p,,), (15)

where I, £,,, and ji, are T, ¥, and p, respectively, restricted to the individuals in set W and

evaluated at (7, 8, &) = (0, B,yg, & o )> and Yyy is the vector Y restricted to the individuals in set
w.
We define the CERAMIC statistic with partially missing data to be

cErAMIC — — (F'G)"  _ (FIG)" (2,94, MG,)’

= = , 16
Var (F'G,Y.X) TF®F 522,00 MOMS,,Z, (16)

where F = M®yy, Zyy is a vector of length r that incorporates phenotype, covariate, and
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pedigree information, in which M = ®;' — ®;'1 (17®,'1,) '17®, ", where 1, is a vector of
length r with every element equal to 1, and @y, denotes the submatrix of ® with rows corre-

sponding to the individuals in R and columns corresponding to the individuals in W, i.e., the

(i, j)th element of ®gyy is 2¢;, where ¢;; is the kinship coefficient between the ith individual in
set R and the jth individual in set W. The variance estimator [17], 62, is just the variance esti-
mator, 67, of Eq (15) restricted to the set, Q, of individuals in N who have non-missing geno-
types and covariates but may or may not have observed phenotypes (U C Q C R), ¢ =1Q|, i.e.

3y 1
O'z :mGQ

P,G,, (17)
where P; = ®,' — @' X, (X, ®,'X,) ' X, ®,', and G, X, and @ are G, X, and @, respec-
tively, restricted to the individuals in set Q. With complete data, i.e, N=R=U= Wand

S =V =), the CERAMIC statistic of Eq (16) reduces to the CERAMIC, statistic of Eq (13)
(see S1 Text for details). Under assumptions described in the next subsection, the CERAMIC
statistic follows an asymptotic y? distribution under the null hypothesis.

Interpretation and justification for CERAMIC

One possible interpretation of the CERAMIC statistic in Eq (16) is that it uses best linear unbi-
ased prediction to impute missing genotypes based on relatives’ genotypes, while downweight-
ing predictions with low information level, correcting for imputation error and correcting for
extra correlation due to imputation. This can be seen [5] by rewriting Eq (16) in terms of the
best linear unbiased predictor (BLUP) of the missing genotypes for the individuals in set S.
More generally, we can let

Gw = ]‘wﬁ + (I)WRQ;(GR - 17[7) = [1w(1rq);117)7113w(1)£1 + (DWRM]GR (18)

denote the BLUP of Gy, where Gyy is the vector G restricted to the individuals in set W, 1,, is a
vector of length w with every element equal to 1, and p = (1,®,'1,)” 17®," G, is the best lin-
ear unbiased estimator [20] of the allele frequency, p, of the variant of interest. Consider G,
the ith element of G,. If individual i is in set U, then G, can be shown [5] to be the observed

genotype of individual i, while if individual i is in set S, then G, is the BLUP of the unobserved
genotype of individual i. In other words, if we reorder the individuals in set W so that the indi-
viduals in set U come first in the list and the individuals in set S follow, then we can write

~ GU GU
G, = R _1 =1 .1 (19)
1sp + <I)SR<I)R (GR - ]‘rp) Gs

where Gy is the vector G restricted to the individuals in set U, and G is the BLUP for the miss-
ing genotypes of the individuals in set S. The CERAMIC statistic can then be rewritten (see S2
Text) in terms of the BLUP imputed genotypes, as

(20)

With retrospective modeling in which the conditional variance is assessed with respect to geno-
types, the additional uncertainty and dependence due to genotype imputation is directly
accounted for.

Alternatively, CERAMIC can be interpreted as a quasi-score test derived from a retrospec-
tive mean model [4, 17], though we do not detail this interpretation here. To obtain the
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asymptotic null distribution for CERAMIC, we slightly modify the null mean assumption in
Eq (10) and assume E, (G, |Y, X) = X,, @, where Xy is the matrix X restricted to the individu-
als in set W and e is a k-dimensional vector of unknown coefficients. Then CERAMIC follows
an asymptotic 2 distribution under the null hypothesis under regularity conditions [21]. The
accuracy, in finite samples, of the 37 approximation to the null distribution is assessed in
Results.

Some computational considerations for CERAMIC

In order to carry out the iterative solution of the system of estimating equations given by Eqs
(3) and (4) (or by Egs (3), (4) and (8) when y is to be estimated as well), we need to obtain the
inverse of the n x n matrix £ = £® + (1 — &)I for different values of £&. We reduce the computa-
tional burden in two ways: (1) Z is inverted block-wise where each block of X corresponds to
a pedigree; and (2) a single spectral decomposition, ® = AJA” (where A is an orthogonal
matrix, and J is diagonal), is used to compute the inverse of X for different values of &, because
1A+ (1 -9D AT, where &+ (1 - OIisa diagonal matrix [22].

The calculation of the transformed null phenotypic residual vector, Zy,, depends on the set
W, which is a function of the genotypic missingness pattern for the genetic variant being tested.
In a GWAS, different SNPs often have different genotypic missingness patterns, so this could
imply that in the worst case scenario, Zy, would need to be computed separately for each SNP
in the genome. One possible way to avoid this would be to compute Zy, only once per genome
scan based on all individuals with non-missing phenotype and covariate information (or based
on some other fixed subset of individuals) and use the same Zy for association testing with
respect to all SNPs across the genome. Another approach, which is the one we actually take,
would be to estimate the variance component (VC) parameter, &, once per genome using all
individuals with non-missing phenotype and covariate information, and then for each SNP,
compute only the regression parameter, §, by solving Eq (3), with y = 0. In this way, we need
only solve Eq (3) to obtain Zy separately for each SNP, which drastically reduces the computa-
tional burden.

The MQLS-LOG and MQLS-LIN tests

In addition to CERAMIC, we also developed two other alternative approaches to association
testing for binary traits in related individuals. These two methods, which we call MQLS-LOG
and MQLS-LIN, both have the following features: (1) they incorporate covariates; (2) they are
generalizations of the MQLS test [4]; (3) they are retrospective and handle missing data in the
same way that CERAMIC does; and (4) they do not involve estimation of an additive polygenic
component of variance. The main difference between them is that MQLS-LOG has a logistic
mean structure while MQLS-LIN has a linear mean structure. In the remainder of this subsec-
tion, we give the details of these two tests, and in the Results section, we compare them, in
terms of type 1 error and power, to CERAMIC and to three previously proposed tests, MAS-
TOR, EMMAX, and GLOGS.

The MQLS-LOG and MQLS-LIN test statistics can each be constructed from the CERAMIC
test statistic of Eqs (16) and (20) by replacing the transformed null phenotypic residual vector,
Zy;, by some other type of residual vector that is a function of (X, Yyy). To obtain the
MQLS-LOG test statistic from the CERAMIC test statistic, we replace Zyy, by the vector of
residuals from the logistic regression model, where this model is given by

Y;|X,, ~ Bernoulli(p,), independently, for i € W, with log% =X/p. (21)

i
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Let B be the maximum likelihood estimator for # under the model of Eq(21), and let € be the
resulting null phenotypic residual vector, defined to have ith element e, = Y, — p,, fori € W,

where p, is given by log1 Ii i[) = X!p. Then the MQLS-LOG test statistic is given by
Gy’ '@ MG,)’
MQLS ~LOG = — 0w (€ ®uMG) (22)
Var(e'G,|Y, X) 03 B MO M®D,, €

where GW is defined in Eq (18), and where we have used the fact that €1, =0 for logistic
regression.

To obtain the MQLS-LIN test statistic from the CERAMIC test statistic, we replace Zy, by
the vector of residuals from the ordinary linear regression model, where this model is given by

E(Y,|X,) =X\ B and Var(Y,|X,)=c"I. (23)

Letp = (X! X,,) ' X’ Y,, denote the ordinary least squares estimator for # under model (23),

and lete = Y, — X, be the resulting null phenotypic residual vector. Then the MQLS-LIN
test statistic is given by

G, @' MG,)’
MQLS —LIN— ¢ G (€®uMG) (24)
Var (e'G,|Y, X) oze" @, MO, MP,, e
Under the same assumptions as for CERAMIC, the MQLS-LOG and MQLS-LIN test statis-
tics both have y? asymptotic null distributions.

Test statistics considered in simulations

In simulations, we assess the type 1 error and power of the three methods we propose,
CERAMIC, MQLS-LOG, and MQLS-LIN, and we compare them to five previously-proposed
methods, EMMAX [8], GEMMA [10], MASTOR [17], GMMAT [15] and CARAT [16].

Table 1 summarizes some of the major features of the methods that are particularly relevant to
the type 1 error and power studies. In the simulations, we provide CERAMIC, GMMAT and
GEMMA with the pedigree-based kinship matrix, while for CARAT and EMMAX, we use an
empirical kinship matrix based on 10,000 independently simulated SNPs with their MAFs ran-
domly drawn from the uniform distribution on the interval between 0.05 and 0.45.

Table 1. Some Relevant Features of the Methods Compared in Simulations.

Method Mean Model
CERAMIC logistic
GMMAT logistic
CARAT logistic
MQLS-LOG logistic
EMMAX, GEMMA linear
MASTOR linear
MQLS-LIN linear

Additive Polygenic VCs? Analysis Type Sophisticated Use of Missing Data?
yes retrospective yes

yes prospective no

yes retrospective no

no retrospective yes

yes prospective no

yes retrospective yes

no retrospective yes

“Sophisticated Use of Missing Data” refers to methods that do something more sophisticated than plugging in the mean genotype value for missing

genotype values or removing missing values.

doi:10.1371/journal.pgen.1006329.t001
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O

Fig 1. Three-Generation Pedigree Used in Simulations. In the simulations, each sampled family is

assumed to have a 3-generation, 16-person pedigree of this form.

doi:10.1371/journal.pgen.1006329.9001

Simulation study design: Covariate model

We simulate genotype, covariate and phenotype data for a sample that includes some unre-
lated individuals and some individuals in three-generation pedigrees (see Fig 1). For each indi-
vidual, four covariates are simulated: age, sex, height, and an i.i.d. normal covariate. The
individuals in pedigrees are each assigned to one of three generations based on their position
in the pedigree: first (i.e., grandparent) generation, second (i.e., parent) generation, and third
(i.e., offspring) generation. Among the sampled unrelated individuals, 50% are randomly
assigned to the first generation, 25% to the second generation, and 25% to the third generation.
The age of an individual is generated according to the generation the individual belongs to.
For an individual in the first generation, the age is simulated according to a uniform distribu-
tion on the set of integers from 78 to 88, i.e., uniform on {78, 79, - - -, 88}. An individual in the
second generation has his or her age generated from a uniform distribution on the set of inte-
gers {48, 49, - - -, 58}, and for an individual in the third generation, we use a uniform distribu-
tion on the set {18, 19, - - -, 28}. Ages for different individuals are generated independently,
regardless of their familial relationships. Let X(,) denote the column vector of age values for a
simulated sample. Sampled individuals from three-generation pedigrees have their sex pattern
fixed as shown in Fig 1. Among the unrelated individuals, half are randomly assigned to be
males and half females. Let X3y denote the column vector of sex values for a simulated sample.
Height is simulated as a heritable trait that exhibits correlation among family members and
depends on age and sex. Let X4, denote the column vector of height values for a simulated
sample. The model for height is multivariate normal, given by

Xy |X ) X5 ~ MVN(V(X5), X 5)), Gﬁfb + JZEI)a (25)

where o} = 36 represents additive polygenic variance for an outbred individual, and 7 =
13 represents i.i.d. error variance, resulting in narrow-sense heritability ~ 73%. The mean
height vector, v(X(,), X(3)), has entry 172.5 for a male with age > 65 and entry 176.5 for a
male with age < 65. For a female with age > 65, the entry in the mean height vector, v(X,),
X(3), is 160.2, while for a female with age < 65, the mean height is set to be 163.2. Let Xs)
denote the column vector of the values of the i.i.d. normal covariate for a simulated sample.
The entries of Xs) are generated from the N(8, 9) distribution, independently of all other
covariates. Let X = (1, X(,), - - -, X(5)) be the covariate matrix consisting of an intercept and
the four covariates described above.
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Simulation study design: Trait models

Two types of trait model are considered in our simulation studies. One is a mixed-effects logis-
tic regression model, which has the following form:

Y,|G, X, u ~ Bernoulli(p,), independently, with p, = h(f(G,) + X/B + u,), (26)

fori=1,...,n, where X" is the ith row of X, u = (uy, - - -, u,)) " is a vector of additive polygenic
effects, G; = (G;1,G;,) represents the genotypes at causal SNPs 1 and 2 for individual i, and f(G;)
is a function of G; that represents the combined genetic effect, on the phenotype, of causal
SNPs 1 and 2. The coefficient vector f is chosen to satisfy two conditions: (1) the mean of the
covariate effects on the logit scale, E(X/ ) = 0, and (2) the variance of the covariate effects on
the logit scale, Var(X]B), achieves a specified level that depends on the simulation setting. The
additive polygenic effects, u, independent of covariates, have a multivariate normal distribution
with mean 0 and covariance matrix GZ(I), where az varies across simulation settings. Let 0, =
Var(u,)/Var(X] B + u,) = 6>/(Var(X]B) + 02) denote the fraction of Var(X] + u,) that is
due to additive polygenic effects, and let 8, = 1 — 8, denote the fraction due to covariate effects.
We fix Var(X!B) + ¢ = 100 and let 62 take possible values 0, 20, 40, 60, 80, and 100, so that
(6, 6.) takes possible values (0, 1), (.2, .8), (.4, .6), (.6, .4), (.8,.2) and (0, 1), representing a
range of the relative importance of additive genetic effects vs. covariate effects. Note that the
model also results in Bernoulli error in the phenotype that is conditionally independent across
individuals and that accounts for ~ 20% of total phenotypic variance in our simulation scenar-
ios (where this value is obtained by simulation).

Causal SNPs 1 and 2, whose genotypes for individual i are encoded in G, are unlinked with
minor allele frequencies (MAFs) .1 and .2 respectively, and they are generated independently
of the covariates and additive polygenic effects. They act on the phenotype epistatically: an
individual with at least one copy of the minor allele at causal SNP 1 and at least one copy of the
minor allele at causal SNP 2 has mean penetrance E(Y;|G) & .15; an individual with a genotype
not satisfying that condition has mean penetrance E(Y;|G) ~ .05. (Note that a target mean pen-
etrance can be achieved by setting f{G;) to be an appropriate value, obtained in a simulation-
based approach.) The resulting prevalence is E(Y;) ~ .057.

The other type of model we consider is a liability threshold model,

., with L, = X"+ u, +e, (27)

i

1 if L > A(G)
{ 0 if L, < A(G)
where L; is the underlying liability for individual i, and A(G;) represents the individual’s liability
threshold, beyond which the disease is activated, as a function of individual i’s genotypes at
causal SNPs 1 and 2. The liability L; consists of three components: X/ 8, the covariate effects, u;,
the random additive polygenic effects, and ¢;, which represents measurement error or environ-
mental effects assumed to be acting independently across individuals. The X;’s and the u/s
have the same distributions as described above. The error terms €, - -,¢, are i.i.d. N(0, ¢?) and
are independent of (X, u). We fix the total liability variance Var(L,) = Var(X/B) + ¢ + o> to
be 100, and the error variance o2 to be 20, so that the liability variance due to additive polygenic
effects and covariates, Var(XB) + o> = 80. Letn, = Var(y,)/Var(L,) = ¢*/(Var(X]B) +
o2 + ¢2) represent the fraction of total liability variance due to additive polygenic effects, and
let 7, = Var(X/B)/(Var(X]B) + 6> + 0) = .8 — =, represent the fraction due to covariate
effects, while the fraction due to the independent error is fixed at.2. We choose different values
for p and o2 to allow (7, 7,) to take on the possible values (0,.8), (.2,.6), (.4,.4), (.6,.2), and
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(.8,0), representing a range of the relative importance of additive genetic vs. covariate effects.
G;, individual i’s genotypes at causal SNPs 1 and 2, has the same distribution as for the mixed-
effects logistic regression model, and in each setting, the values of A(G;) are chosen so that an
individual with at least one copy of the minor allele at causal SNP 1 and at least one copy of the
minor allele at causal SNP 2 has mean penetrance E(Y;|G;) ~ .15, while an individual with a
genotype not satisfying that condition has mean penetrance ~ .05. The resulting prevalence is
again ~ .057.

In addition, we consider two variations on the liability threshold model. In the first varia-
tion, we model the effects of shared environment by incorporating a sibship random effect that
accounts for 10% of the total liability variance. In that case, we set the error variance to also
account for 10% of the total liability variance, and the additive polygenic and covariate effects
are as described in the previous paragraph. In the second variation on the liability threshold
model, we modify the threshold values, A(G;), so that the prevalence is reduced to.01.

Simulation study design: Ascertainment and missingness

In simulations, we consider both the case when there is complete genotype, phenotype and
covariate data as well as cases with missing data. In the complete data case, we simulate geno-
type, covariate and phenotype data, according to one of the binary trait models described
above, for either a 600-person sample (consisting of 30 families, with each family having the
16-person pedigree shown in Fig 1, and an additional 120 unrelated individuals) or a 1000-per-
son sample (consisting of 50 families and an additional 200 unrelated individuals). In some sce-
narios, families are ascertained conditional on containing at least four affected individuals,
while unrelated individuals are sampled at random from the population (call this ascertain-
ment setting A), while in other scenarios, families are ascertained as in setting A while unre-
lated individuals are sampled in a 1:1 case-control ratio (call this ascertainment setting B). All
sampled individuals are assumed to have non-missing covariates, phenotypes and genotypes.

For scenarios with missing data, we simulate genotype, covariate and phenotype data for
either a 1,200-person sample (consisting of 60 families, with each family having the 16-person
pedigree shown in Fig 1, and an additional 240 unrelated individuals), or a 2,000-person sam-
ple (consisting of 100 families and an additional 400 unrelated individuals). In addition, for the
run time assessments, we also simulate samples of size 10%, 4 x 10°, 6 x 10%, 8 x 10° and 10%
each consisting of 80% related and 20% unrelated individuals. We use ascertainment settings A
and B as described above. For each individual in a family, his or her phenotype and covariates
are assumed to be all non-missing with probability .8 (and are assumed to be all missing with
probability .2), independently across individuals and families, and his or her genotype at the
tested locus is assumed to be non-missing if and only if at least one of the following two condi-
tions holds: (1) the individual has non-missing phenotype and is affected, or (2) at least half of
the individual’s first degree relatives who have non-missing phenotypes are affected. Among
the unrelated individuals, all their phenotypes and covariates are assumed to be missing, and
all their genotypes are assumed to be non-missing, i.e., they are included as controls of
unknown phenotype.

Application to T2D data from the FHS

The FHS is a multicohort, longitudinal study whose primary objective is to identify the risk fac-
tors and characteristics responsible for cardiovascular disease. The goal of our data analysis is
to identify SNPs that are associated with T2D. Our use of the FHS data was approved by the
Institutional Review Board of the Biological Sciences Division of the University of Chicago.
The FHS sample consists of unrelated individuals as well as individuals from multigeneration
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pedigrees. For cohort 1 (i.e., original cohort), we use phenotype and covariate information
from 27 clinical exams, for cohort 2 (i.e., offspring cohort), we use information from 7 clinical
exams, and for cohort 3 (i.e., generation three cohort) we use information from 1 clinical exam.
We determine the T2D phenotype status in a similar way to that in a previous work [23]. For
individuals in cohort 1, we use data from exams 1-27 to label their T2D status as follows: indi-
viduals who have at least one exam with nonfasting blood glucose (BG) level > 200mg/dl or
who were under treatment for diabetes, where the measurement or treatment occurred
between the ages of 35 and 75 years, are classified as “affected” For individuals who have all
exams with nonfasting BG<200 mg/dl and have never taken any treatment by the time of the
last exam, a phenotype label “unaffected” is given if the individual has age > 70 years at the
time of the last exam, while the “unknown” label is given otherwise. We use data from exams
1-7 and exam 1 to determine the phenotype status for individuals in cohorts 2 and 3, respec-
tively. Phenotype is coded as follows for both cohorts: individuals who have at least one exam
with fasting plasma glucose (FPG) level > 126mg/dl or who were under treatment for diabetes,
where the measurement or treatment occurred between the ages of 35 and 75 years, are classi-
tied as “affected” For individuals who have all exams with FPG<126 mg/dl and have never
taken any treatment by the time of the last exam, a phenotype label “unaffected” is given if the
individual has age > 70 years at the time of the last exam while “unknown” is given otherwise.
Sex and body mass index (BMI) are included in our analysis as covariates, where we use the
mean of an individual’s available BMI values from all clinical exams that the individual partici-
pated in. Note that onset age is not included as a covariate in our analysis, because it is not
well-defined for an unaffected individual. In addition, the age of an individual at the time of
the last exam and cohort ID are artificially correlated to the phenotype status in the restricted
sample with known phenotypes, and therefore neither should be added as a covariate.

Among the 9240 study individuals for whom Affymetrix 500K genotype data are available,
we exclude individuals who have either (1) completeness (the proportion of markers with suc-
cessful genotype calls) < 96%, or (2) empirical self-kinship coefficient ®, > 1.05. In addition,
we exclude 298 individuals whose off-diagonal empirical kinship coefficient values are not con-
sistent with the given pedigree information. Of the 8080 individuals retained in the analysis,
639 are not related to anyone else in the data set with the remaining 7441 related through 840
pedigrees. 6042 individuals have either missing phenotype or missing covariate information,
625 are affected with non-missing covariates, and 1413 are unaffected with non-missing covar-
iates. We exclude from our analysis SNPs that have (1) call rate < 96%, or (2) Mendelian error
rate > 2%, or (3) MAF < 1%, which results in a total of 368,802 SNPs retained in the analysis.
Furthermore, following Wu and McPeek (submitted), we note that individuals in the original
cohort appear to have on average lower genotype quality (lower completeness and higher
empirical self-kinship values) than those in the other two cohorts. To prevent spurious associa-
tion potentially caused by poor genotype quality in cohort 1, for each SNP, we test for an allele
trequency difference between cohort 1 and the other cohorts combined. If the allele frequency
difference is significant at level 1077, the SNP is removed from our study. Under this screening
procedure, we exclude an additional 1,032 SNPs, resulting in a final set of 367,770 SNPs to
include in the analysis.

Results

Assessment of type 1 error when relevant covariates are included in the
trait model

To assess the type 1 error of CERAMIC, MQLS-LOG and MQLS-LIN, we perform simulations
as described in Methods. In each simulation scenario, phenotypes are generated according to
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Table 2. Empirical Type 1 Error of CERAMIC, MQLS-LOG and MQLS-LIN, Based on 25,000 Simulated Replicates.

Trait Model
Logistic
Logistic
Logistic
Logistic
Logistic
Logistic
Logistic
Logistic
Liability
Liability
Liability
Liability
Liability
Liability
Liability
Liability

Subset Used

All
All
MX
MX
All
All
MX
MX
All
All
MX
MX
All
All
MX
MX

Empirical Type | Error of

MAF Nominal Level CERAMIC MQLS-LOG MQLS-LIN
0.2 .05 .049 .050 .049
0.1 .05 .051 .050 .050
0.2 .05 .049 .049 .049
0.1 .05 .051 .051 .050
0.2 .001 .0011 .0010 .0011
0.1 .001 .0007 .0008 .0007
0.2 .001 .0010 .0010 .0010
0.1 .001 .0009 .0009 .001
0.2 .05 .051 .050 .050
0.1 .05 .048 .0474 .048
0.2 .05 .052 .052 .051
0.1 .05 .050 .050 .051
0.2 .001 .0011 .0011 .0010
0.1 .001 .0011 .0011 .0012
0.2 .001 .0008 .0008 .0008
0.1 .001 .0009 .0009 .0007

“Logistic” denotes the mixed-effects logistic regression model of Eq 26 with (6,, 6.) = (.6, .4). “Liability” denotes the liability threshold model of Eq 27 with
(174, 0) = (.4, .4). “All” indicates that all individuals, including those with partially missing data are included in the analyses for all three statistics. “MX” (for

“missing excluded”) indicates that only individuals with complete data are included in the analyses for all three statistics. “MAF” denotes the minor allele
frequency of the tested SNP. The radius of the 95% confidence interval for nominal level .05 is .0027, and that for nominal level .001 is .0004.

doi:10.1371/journal.pgen.1006329.t002

either the mixed effects logistic regression model of Eq (26) with (8,, 8,) = (.6, .4) (referred to
in Table 2 as “Logistic”) or the liability threshold model of Eq (27) with (7, 71.) = (4, .4)
(referred to in Table 2 as “Liability”). Association is tested with a SNP that is neither linked nor
associated with the trait, with MAF set to be either .1 or .2. In every scenario, we simulate 1,200
individuals with missing data using ascertainment setting A as described in Methods. In each
simulation scenario, we consider one of two approaches to analyzing the data, either (1) indi-
viduals with partially missing data are included in the analysis for every statistic (denoted by
“All” in Table 2), or else (2) individuals with partially missing data are dropped from the analy-
sis for every statistic (denoted by “MX” for “missing excluded” in Table 2). Table 2 shows that
in every case, the empirical type 1 error is not significantly different from the nominal, verify-
ing the correct type 1 error of CERAMIC, MQLS-LOG and MQLS-LIN in these scenarios.

S1 and S2 Tables contain additional type 1 error results for scenarios that include effects of
shared environment on the trait and more stringent ascertainment on the unrelated individuals
in a sample (ascertainment setting B) or more stringent ascertainment due to reduced preva-
lence (value .01). The number of individuals in a sample ranges from 600 to 2,000, depending
on the scenario. In every scenario, the type 1 error remains correct for CERAMIC, MQLS-LOG
and MQLS-LIN.

We perform additional simulations in which we compare the type 1 error rate of GEMMA
to those of CERAMIC, MQLS-LOG and MQLS-LIN. Phenotypes are generated according to
the liability threshold model of Eq (27) with various settings of (7,, 7). In every scenario, we
simulate 1,200 individuals with missing data and use ascertainment setting A. Association is
tested with an unlinked, unassociated SNP with MAF .2. S3 Table shows that in every scenario,
the type 1 error of GEMMA is significantly inflated when the mean genotype value is imputed
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for the missing genotypes, and it is significantly deflated when the missing genotypes are
removed. In contrast, the type 1 error of CERAMIC, MQLS-LOG and MQLS-LIN is correct in
all scenarios. Because we observe uncontrolled type 1 error for GEMMA in these settings, we
do not consider GEMMA further in our simulations.

Type 1 error with trait model misspecification

In an association study, the correct trait model is generally unknown. In particular, it may not
be known which covariates should be included in the model. In Table 3, we compare the type 1
error of CERAMIC, MQLS-LOG and GMMAT in the situation in which the relevant covariates
are inadvertantly left out of the fitted model. The results show that in almost every scenario,
the type 1 error of GMMAT is compromised (either significantly inflated or significantly
deflated) when the trait model is misspecified. In contrast, CERAMIC and MQLS-LOG retain
correct type 1 error when the trait model is misspecified. This likely reflects the fact that retro-
spective methods tend to be much more robust to phenotype model misspecification than pro-
spective methods are.

Table 3. Type 1 Error when the Trait Model Is Misspecified.
Empirical Type | Error of

Partially Missing Data? Model Setting MQLS-LOG CERAMIC GMMAT

Yes Threshold (60,20) A .050 .050 .061
Yes Threshold (40,40) A .048 .048 .066
Yes Threshold (20,60) A .050 .050 .057
Yes Threshold (0,80) A .049 .049 .057
Yes Threshold (20,60) B .051 .051 .057
Yes Threshold (20,60) .01 .051 .051 .060
Yes Logistic (80,20) A .051 .052 .058
Yes Logistic (60,40) A .050 .050 .059
Yes Logistic (40,60) A .050 .050 .063
Yes Logistic (20,80) A .048 .048 .058
Yes Logistic (0,100) A .052 .052 .052
No Threshold (60,20) A .048 .048 .047
No Threshold (40,40) A .051 .051 .048
No Threshold (20,60) A .051 .051 .040
No Threshold (0,80) A .051 .051 .029
No Threshold (20,60) B .050 .050 .044
No Threshold (20,60) .01 .049 .049 .039
No Logistic (80,20) A .049 .049 .050
No Logistic (60,40) A .051 .051 .050
No Logistic (40,60) A .050 .050 .045
No Logistic (20,80) A .048 .048 .037
No Logistic (0,100) A .049 .049 .029

“Trait Model is Misspecified” refers to the fact that the relevant covariates are left out of the fitted model. Under “Model”, for example, “Threshold (60, 20)”
refers to the mixed effects liability threshold trait model with (17,, 7.) = (60, 20) and “Logistic (80,20)” refers to the mixed effects logistic trait model with (8,
6.) = (80, 20). Under “Setting”, “A” refers to ascertainment setting A, “B” refers to the setting in which a shared environment random effect is included in the
trait model and ascertainment setting B is used, and “.01” refers to the setting in which the prevalence is set to.01 and ascertainment setting A is used. In all
scenarios in which partially missing data are included, the number of individuals sampled in each simulated replicate is 1,200, while in all complete data
settings, the number of individuals sampled in each simulated replicate is 600. Empirical type 1 error is assessed based on 25,000 simulations. The radius
of the 95% confidence interval for nominal level .05 is .0027. Bold indicates a type 1 error rate that is outside the 95% confidence interval.

doi:10.1371/journal.pgen.1006329.t003
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Power comparison with partially missing data when relevant covariates
are included in the trait model

We compare the power of CERAMIC to that of MQLS-LOG, MQLS-LIN, MASTOR,
EMMAX, GMMAT and CARAT in various simulated scenarios with missing data and ascer-
tainment, as described in Methods. GMMAT offers two options to deal with missing genotype
data: the missing genotypes can either be removed or replaced by the estimated mean genotype
value. In practice, we found that the two options give identical results, so the simulation results
we report for GMMAT apply to both options. Panel A in Fig 2 gives the empirical power results
for various settings of the mixed effects logistic regression model with missing data, while
Panel B in Fig 2 gives the results for the liability threshold model with missing data. In both
cases, ascertainment setting A is used. Numerical results for these power simulations can be
found in S4 and S6 Tables. S12 and S13 Tables give power results for additional missing data
scenarios that include effects of shared environment on the trait and more stringent ascertain-
ment on the unrelated individuals in a sample (ascertainment setting B) or more stringent
ascertainment due to reduced prevalence (value .01).

From Panels A and B in Fig 2, it is clear that in every scenario, in terms of power, CERAMIC
either outperforms, or has equivalent performance to, the best of the other methods, regardless
of the relative strength of covariates and additive polygenic effects on the trait. In particular,
CERAMIC has dramatically higher power than the previously-proposed binary trait methods
GMMAT and CARAT. This result also holds in the partially missing data scenarios in S12 and
S13 Tables.

In Panels A and B of Fig 2, a major feature distinguishing the power of the methods is that
those methods that make sophisticated use of missing data (CERAMIC, MQLS-LOG, MAS-
TOR and MQLS-LIN) substantially outperform those that do not (CARAT, EMMAX and
GMMAT). Within each of these two groups, when covariate effects are large relative to additive
polygenic effects (6, < .4 or i, < .2), the methods that fit a logistic mean structure outperform
the methods that fit a linear mean structure, i.e., CERAMIC and MQLS-LOG outperform
MASTOR and MQLS-LIN, while CARAT and GMMAT outperfom EMMAX. For the mixed-
effects logistic regression trait model, this is not surprising, because the simulated model also
has a logistic mean structure. However, it is notable that, among methods that treat missing
data in the same way, the methods that fit a logistic mean structure also outperform those that
fit a linear structure in the case of the liability threshold model, in which the simulated model
does not have a logistic mean structure. This improvement may be due to the flexibility
afforded by the nonlinearity of a logistic mean structure. Through the power comparison of
CERAMIC to MQLS-LOG and that of MASTOR to MQLS-LIN, we can see that fitting the
additive VC (as in MASTOR and CERAMIC) does not harm power in any scenario, and it
improves power when the additive polygenic effects are large relative to covariate effects
(6, > .6, 0r m, > .8). When additive polygenic effects are large, GMMAT has the lowest power
of all methods. This might reflect known limitations [24] of the penalized quasi-likelihood
approach, which is used by GMMAT.

Extent to which missing genotype information is recovered by the binary
trait methods

We perform additional simulations to compare the ability of the three binary trait methods,
CERAMIC, GMMAT and CARAT, to recover power from partially missing genotype informa-
tion when mean values are plugged in for missing genotype values in both GMMAT and
CARAT. We simulate under the liability threshold trait model with (7, 71.) = (40, 40) with
1,200 individuals in each simulated replicate, under acertainment setting A with missing data.
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Fig 2. Empirical Power of CERAMIC and Other Methods. Empirical power is based on 10,000 replicates. The error bars indicate 95%
confidence intervals. Panels A and B are for the case in which all relevant covariates are included in the fitted model. Panels C and D are
for the case in which the relevant covariates are not included in the fitted model. In Panels A and C, the trait is simulated by the mixed-
effects logistic regression model, and it Panels B and D, it is by the liability threshold model. The horizontal scale in the plots indicates the
relative impact of covariates versus additive polygenic effects on the phenotype, with the far left corresponding to no polygenic effects and
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strong effects of covariates and the far right corresponding to no effect of covariates and strong polygenic effects. In all cases, partially
missing data are simulated and ascertainment setting A is used. In the settings of panels C and D, the MQLS-LOG and MQLS-LIN
methods give identical results, so only the MQLS-LOG results are depicted, and similarly, the CERAMIC and MASTOR methods give
identical results, so only the CERAMIC results are depicted.

doi:10.1371/journal.pgen.1006329.g002

Because the data are simulated, the missing genotype values are actually available, so we can
determine what the power would have been for each of the three methods had the genotype
data not been missing. This power is represented in the leftmost set of three bars in Fig 3,
labeled “Complete Genotype Data” This is compared to the power when the individuals with
missing genotype data are removed from the input files before the methods are run, and the
power when individuals with missing genotype data remain in the input filesand CERAMIC is
run in the usual way, while GMMAT and CARAT are run with the mean genotype value
plugged in for the missing genotypes.

From Fig 3, we can see that in this setting, CERAMIC is able to recover virtually all of the
power of the complete genotype data by using the information from the partially missing geno-
type data. In contrast, the strategy of imputing the mean genotype value for missing genotype
data in GMMAT or CARAT results in power that is not significantly different from that
obtained by throwing those individuals out of the analysis. This demonstrates that appropriate
handling of missing data can result in a substantial power advantage compared to a simple
strategy such as imputing the mean genotype value or discarding missing values.

Power comparison with partially missing data and model
misspecification

Because the trait model typically cannot be known with certainty, it is always possible that rele-
vant covariates may be left out of the fitted model. Panels C and D of Fig 2 show results from
the same simulated scenarios as those of Panels A and B, respectively, but for the situations in
which the fitted model excludes the relevant covariates. Numerical results for these power sim-
ulations can be found in S5 and S7 Tables. In Fig 2, from a comparison of Panels A and B to
Panels C and D, we can see that, for all methods, adjusting for covariates improves power in
the settings in which covariates play a role in explaining the phenotypic variation (6, < 1 or

7, < .8) and does not compromise power in the other cases.

In Panels C and D, it can be seen that CERAMIC has the highest power in all settings. In
contrast, GMMAT is severely underpowered, having the lowest power (or power not signifi-
cantly different from the lowest) for all settings. Among the three methods that do not correct
for missing data (CARAT, EMMAX and GMMAT), CARAT, which is a retrospective method,
has the highest power for all the settings in which the model is misspecified (6, < .8 in Panel C
and 7, < .6 in Panel D), likely reflecting the greater robustness to trait model misspecification
of the retrospective methods. The power difference between the methods that correct for miss-
ing data (CERAMIC and MQLS-LOG) and the others is quite large (up to 6-fold), particularly
in the settings in which covariates play an important role.

Power comparison with complete data

S8, 89, S10 and S11 Tables give power for scenarios analogous to those in Fig 2 but with com-
plete data instead of partially missing data. S12 and S13 Tables give power results for additional
complete-data scenarios that include effects of shared environment on the trait and more strin-
gent ascertainment on the unrelated individuals in a sample (ascertainment setting B) or more
stringent ascertainment due to reduced prevalence (value .01).
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Fig 3. Comparison of Extent of Power Recovery with Missing Genotypes for CERAMIC, CARAT and GMMAT. Empirical
power is based on 10,000 replicates. The error bars indicate 95% confidence intervals. The trait is simulated according to the liability
threshold trait model with (17, 17,) = (40; 40) with 1,200 individuals in each simulated replicate, under acertainment setting A with
missing data. In the “Remove Missing Genotypes” setting, individuals with missing genotypes are removed from the input files
before the methods are run. In the “Use Missing Genotypes” setting, individuals with missing genotypes remain in the input files, and
GMMAT is run with the option to impute the mean genotype value for the missing genotypes, CERAMIC is run with default settings,
and CARAT is run with the mean genotype value plugged in for the missing genotypes in the input file. In the “Complete Genotype
Data” setting, the missing genotype values are “unmasked” and included in the input files for all methods.

doi:10.1371/journal.pgen.1006329.9003
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With complete data, when all relevant covariates are included in the model, the three binary
trait methods have approximately equal power in all scenarios. However, when relevant covari-
ates are excluded from the model, the power of the prospective method GMMAT is lower than
that of the retrospective methods CERAMIC and CARAT. The MQLS-LOG method, which
has a logistic mean structure but does not include an additive polygenic VC has power approxi-
mately equal to that of the most powerful binary trait methods (CERAMIC and CARAT) when
the additive polygenic variance is low, but loses power when the additive polygenic variance
accounts for a high proportion of the trait variance. The EMMAX and MASTOR methods,
which have an additive polygenic VC but linear instead of logistic mean structure, have power
approximately equal to that of the most powerful methods (CERAMIC, CARAT and
GMMAT) when covariates do not play an imporant role in the trait model and additive poly-
genic variance does. Compared to the retrospective method MASTOR, the prospective method
EMMAX loses power when relevant covariates are omitted from the fitted model in the settings
in which covariates play an important role in the trait model (6, < .2 or 77, < .2). For EMMAX,
in particular, this could be explained in more detail by the fact that EMMAX assesses the varia-
tion of the test statistic based on phenotypic variance (i.e., phenotypes are treated as random in
EMMAX), and failure to adjust for covariates would lead to inflation of the estimated pheno-
typic variance, and hence, to a reduction in power, whereas the retrospective methods such as
MASTOR and CERAMIC assess variation based on genotypic variance (i.e., genotypes are
treated as random), so are robust to power loss arising from misspecification of the phenotype
model. Regardless of whether or not covariates are adjusted for, CERAMIC has higher power
than EMMAX when covariate effects are large relative to additive polygenic effects (6, < .2 or
7, < .2), and maintains similar power to EMMAX in other scenarios.

Analysis of T2D data from the FHS

For the analysis of T2D data from the FHS (sample size 8080 individuals with 367,770 SNPs
after quality control), we restrict consideration to methods that did not experience type 1 error
problems in our simulations. We compare CERAMIC, MASTOR, EMMAX, MQLS-LOG and
MQLS-LIN. Tables 4 and 5 report the estimates, with standard errors, of the regression param-
eters and VCs obtained by CERAMIC and MASTOR (which use different null phenotypic
models). The Q-Q plots (not presented) for the genome scan p-values from all five methods do
not exhibit any evidence of inflation, and their genomic control inflation factors [25] are all
below 1.01.

Table 6 presents the p-values for the SNPs with the strongest association signals with T2D,
i.e., the SNPs for which at least one of CERAMIC, MASTOR and EMMAX gives a p-
value < 2 x 10~°. The two SNPs with the smallest p-values, rs4506565 and rs7901695, are in an
intron of TCF7L2 (MIM 602228), which has been extensively reported to have strong associa-
tion with T2D [26-28]. Among the other 5 genes listed in the table, TLE1 (MIM 600189) has

Table 4. Parameter Estimates, (Qo,ﬁo), in the Null Phenotypic Model of CERAMIC, for Type 2 Diabetes
in the Framingham Heart Study.

Parameter Estimate SE

¢ (VC parameter) 41 -
Intercept -6.3 41
Coefficient of sex -.75 A
Coefficient of BMI .24 .01

Sex is coded as female =2, male = 1.

doi:10.1371/journal.pgen.1006329.1004
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Table 5. Parameter Estimates in MASTOR’s Null Phenotypic Model for Type 2 Diabetes in the Fra-
mingham Heart Study.

Parameter MLE (SE)
h (heritability) .45 (.08)
o2 (additive variance) .074 (.01)
a2 (environmental variance) .090 (.01)
o3 (total variance) .16 (.005)
Intercept -.64 (.06)
Coefficient of sex -.12(.02)
Coefficient of BMI .041 (.002)

There are only 2 independently specified VC parameters in the model; the 4 VC parameters in the table are
related by the equations h = ¢2 /07 and 6. + 62 = o7. Sex is coded as female = 2, male = 1.

doi:10.1371/journal.pgen.1006329.t005

previously been reported and replicated as a T2D susceptibility locus [29, 30], and GALNT9
(MIM 606251) is the left flanking gene of SNP rs10747083 previously found to be significantly
associated with fasting glucose [31]. DLGAP]I has previously been associated with serum insu-
lin-like growth factor-binding protein 3 (IGFBP-3) levels [32]. DLGAPI has also been previ-
ously associated [33] with levels of cardiac troponin T measured by a highly sensitive assay (hs-
cTnT), where hs-cTnT has been found [34] to be associated with diabetes mellitus in patients
with stable coronary artery disease. PALLD has previously been associated [35] with aspartate
aminotransferase (AST) level, where elevated AST level has shown evidence of possible associa-
tion with risk of T2D [36].

Table 6. SNPs with Strongest Association with Type 2 Diabetes in the Framingham Heart Study.

SNP
rs13116548
rs1548315
rs6817551
rs11733251
rs2331450
rs10518037
rs1531254
rs1870306
rs17083935
rs12004598
rs17083941
rs4506565
rs7901695
rs12243326
rs4132670
rs7488766
rs11874767

Chr

© O » DDA

©

10
10
10
10
12
18

Position
169874620
169841518
169829345
169881917
169901225
169899023
169881245
169923672
83326808
83354770
83327608
114756041
114754088
114788815
114767771
132665596
3952917

P-value Based on

Nearest Gene CERAMIC MASTOR EMMAX MQLS-LOG MQLS-LIN
PALLD 1.3e-05 2.6e-05 7.8e-05 2.7e-05 5.2e-05
PALLD 1.3e-05 2.5e-05 5.8e-05 2.9e-05 5.2e-05
PALLD 1.9e-05 3.6e-05 4.7e-05 4.7e-05 8.0e-05
CBR4 1.5e-05 2.7e-05 4.7e-05 2.9e-05 4.9e-05
CBR4 1.6e-05 2.8e-05 5.9e-05 3.2e-05 5.2e-05
CBR4 1.7e-05 2.9e-05 5.9e-05 3.4e-05 5.6e-05
CBR4 1.7e-05 3.2e-05 5.6e-05 3.1e-05 5.4e-05
CBR4 1.9e-05 3.1e-05 8.9e-05 3.0e-05 4.6e-05
TLE1 1.4e-05 1.7e-05 2.3e-05 3.9e-05 5.8e-05
TLE1 1.7e-05 2.0e-05 4.9e-05 3.4e-05 5.0e-05
TLE1 2.0e-05 2.6e-05 5.7e-05 5.3e-05 8.0e-05
TCF7L2 1.7e-07 4.4e-08 1.3e-07 3.0e-07 1.0e-07
TCF7L2 3.1e-07 9.2e-08 5.4e-07 4.5e-07 1.6e-07
TCF7L2 1.0e-06 4.6e-07 3.8e-06 2.2e-06 1.2e-06
TCF7L2 1.3e-06 3.1e-07 1.8e-06 2.6e-06 8.8e-07
GALNT9 1.5e-05 6.3e-06 3.4e-06 2.6e-05 1.6e-05
DLGAP1 9.5e-06 1.8e-05 3.3e-05 3.5e-05 6.3e-05

Bold indicates the smallest p-value for each SNP. MIM numbers of genes not mentioned in the text: PALLD (MIM 608092), CBR4 (No MIM number),

DLGAP1 (MIM 605445).

doi:10.1371/journal.pgen.1006329.t006
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From Table 6, we observe that among the three tests that account for additive polygenic
effects, i.e. CERAMIC, MASTOR and EMMAX, EMMAX almost always gives the largest p-val-
ues, while CERAMIC often yields the smallest p-values.

Run times for CERAMIC

CERAMIC as well as MQLS-LOG and MQLS-LIN are implemented in the CERAMIC softare,
which will be made freely available at http://www.stat.uchicago.edu/ ~ mcpeek/software/index.
html. We report run times for CERAMIC in simulations and in analysis of the FHS data set.
All runs are completed using only one core (at 3.5GHz) of Intel Xeon CPU E5-2637 v3. In
CERAMIC, the time-limiting step is the incorporation of missing data, which depends strongly
on the sizes of the individual pedigrees making up the sample because the missing data incor-
poration is based only on genotype and phenotype information from the close relatives of the
individuals with missing genotype. Therefore, because incorporation of missing data is the
slowest step, for fixed size of the families making up the sample, the computation could be
expected to scale approximately linearly in sample size. We report run times on simulated data
sets with varying sample sizes, where each sample consists of 20% unrelated individuals and
80% related individuals in families of the type in Fig 1, tested at 50000 SNPs. For sample sizes
of 1 x10%,2 x 10,4 x 10%, 6 x 10°, 8 x 10> and 1 x 10", we obtain run times of 4.9, 7.8, 16.2,
23.6, 32.8 and 39.0 minutes, respectively. These run times are plotted in S1 Fig, from which it is
clear that the run time is indeed approximately linear for a fixed family size.

For the FHS data set, which contains 8080 individuals, it takes approximately 4.2 hours to
perform a scan of 367,770 SNPs with phenotypic residuals computed once per genome screen,
and approximately 6.1 hours if phenotypic residuals are computed separately for each SNP.
This time is greater than would be needed for a sample of 8080 individuals of the type in our
simulations because Framingham includes several families that each have hundreds of individ-
uals, for whom the missing data step is much more time consuming. However, even in this
case, the computation time would be expected to scale approximately linearly as the sample
size increased, for a fixed family complexity. With complete data, the computations could be
substantially sped up by taking a different algorithmic approach, similar to those used in LMM
methods. However, such an approach is not optimal for partially missing data. In all cases, the
computations are easily parallelized across tested variants.

Discussion

For genetic association mapping of binary traits in samples with related individuals, we have
developed a new method, CERAMIC, which incorporates pedigree and covariate information
and effectively handles partially missing data. CERAMIC is applicable to samples that contain
essentially arbitrary combinations of related and unrelated individuals. CERAMIC can be
viewed as a hybrid of logistic regression and LMM approaches. Like LMM methods,
CERAMIC incorporates an additive component of variance and can accommodate related
individuals in a computationally feasible way. Like logistic regression methods, CERAMIC
uses a logistic function to model the effects of covariates on a binary trait, and it accounts for
the dependence of the variance on the mean (i.e. Bernoulli variance). As a result, CERAMIC is
able to gain power, over LMM methods, for association mapping of binary traits. In addition to
adjusting for covariates, CERAMIC can increase power by incorporating partially missing
data. CERAMIC is based on a set of estimating equations, and we take a retrospective approach
to assessment of significance of the test statistic, which provides a way to more easily incorpo-
rate partially missing data and also leads to robustness of the method to misspecification of the
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phenotype model. CERAMIC is implemented in freely-available software and is computation-
ally feasible for current genome-wide association studies.

In simulations, we demonstrate that CERAMIC outperforms previously-proposed binary-
trait methods GMMAT and CARAT in scenarios with partially missing data, with CERAMIC
giving large increases in power over the other two methods in many scenarios. CERAMIC also
outperforms GMMAT when the trait model is misspecified, with both large increases in power
and also improved type 1 error control over GMMAT. When there are no missing data and the
correct set of covariates is included in the fitted model, the three methods have approximately
equal power. We show that the sophisticated handling of partially missing data in CERAMIC
can recover a large portion of the power of complete data. In contrast, imputation of the mean
genotype value for missing genotype data in GMMAT or CARAT does a poor job, recovering
almost no power.

In a range of simulated scenarios with different types of trait models, various levels of relative
importance of covariate effects and additive polygenic effects within a trait model, and either
complete data or partially missing data, CERAMIC outperforms or performs as well as the best-
performing of the other methods considered, MQLS-LOG, MQLS-LIN, MASTOR, EMMAX,
GMMAT and CARAT. In addition, we have demonstrated that, when covariates play a major
role in the trait model and relevant covariates are included in the fitted model, the methods that
incorporate a logistic mean structure tend to perform better than those that incorporate a linear
mean structure, even when the underlying trait model is not logistic, but instead follows a liabil-
ity threshhold model. When additive polygenic effects play a major role in the trait model, the
methods that include an additive polygenic VC tend to have higher power than the other meth-
ods. When data are partially missing among related individuals, the retrospective methods that
incorporate sophisticated missing data handling (CERAMIC, MQLS-LOG, MQLS-LIN and
MASTOR) boost power by exploiting information contained in partially missing data.

We apply our methods to analysis of T2D in the FHS data, where we replicate association
with two previously-identified T2D susceptibility loci TCF7L2 [26-28], and TLEI 29, 30]. In
fact, of the 10 smallest CERAMIC p-values in our genomewide analysis, 9 occur in or near
either known T2D susceptibility loci or plausible candidates (6 loci in total), verifying that
CERAMIC is able to home in on the important loci in a genome scan.

In genetic association studies, it can be of interest to estimate the association parameter ¥, for
example, as a way to quantify the strength and direction of association and/or to build a predic-

tive phenotype model. With complete data, y can be estimated by 7, where (5, 8, £) is the solu-
tion of the system consisting of Eqs (3), (4) and (8), with the standard error of j given by the
square root of the first diagonal element of Eq (14). With partially missing data, if our primary
aim is to estimate ¥, rather than to test for association, then we first need to make a careful
choice of the set of individuals to be included in the estimation. We would naturally include all
the individuals in U, the set of individuals with complete data, and we can also include a subset
§' C S, where §' is a set of individuals who have non-missing phenotype and covariate informa-
tion, and whose genotypes can be informatively estimated from genotyped relatives. We can
then set W = UU § and use Eq 19, with W' and §' substituted for W and S, to obtain the BLUP
vector G,,. Then y can be estimated by solving the system of Eqs (3), (4) and (8), where all vec-
tors and matrices are restricted to contain only those individuals in set W’ and where G, is
substituted for G. In the presence of substantial amounts of missing data, the choice of the set &
could potentially impact the properties of the resulting estimator of y. While including in the
estimation some ungenotyped individuals whose genotypes can be informatively estimated
could improve the precision of the estimator by drawing information from genotyped relatives,
inclusion of ungenotyped individuals on whose genotypes the data provide relatively low
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information could bias the estimate of y. This is in contrast to the testing problem, in which
including such individuals would simply provide a relatively low amount of additional power.

In deriving phenotypic residuals, we have used an estimating equation framework to esti-
mate the regression coefficients and VCs. This framework, although built specifically for binary
traits, can be generalized to traits with a general exponential family distribution, e.g., count
phenotypes distributed as Poisson. For such traits, we propose a general mean and variance
structure for testing the null hypothesis,

E(Y|X,G) = p,(B) =g ' (x/B+ Gp), (28)

Var(Y[X, G) = diag(v/V (1), -+, v/ V(1)) Ediag(v/V (,), -+, v/ V(1,), (29)

where g(x) and V(u) are the link and variance functions, respectively, chosen for the given
exponential-family distribution [37]. For binary traits, typical choices for g(x) and V(y) are the
logit function (i.e. log(x/(1 — x))) and Bernoulli variance y(1 — y), while for Poisson traits, typi-
cal choices would be g(x) = log(x) and V(y) = p. Furthermore, the correlation matrix > can be
extended to include more VCs (e.g., dominance variance) by assuming

ET=¢®, + 4 B, + (1 — SV &)L A system of estimating equations can be constructed
in a similar way and solved in a recursive fashion.

Supporting Information

S1 Text. Equivalence of Eqs (16) and (13) with Complete Data.
(PDF)

S2 Text. Equivalence of Eqs (16) and (20).
(PDF)

S1 Table. Empirical Type 1 Error with Shared Environment and More Stringent Ascertain-
ment.
(PDF)

S2 Table. Empirical Type 1 Error with Prevalence 1%.
(PDF)

$3 Table. Empirical Type 1 Error of MQLS-LIN, MQLS-LOG, CERAMIC and GEMMA,
with Partially Missing Data.
(PDF)

S4 Table. Power Comparison with Partially Missing Data, When All Relevant Covariates
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tic Model.

(PDF)

S5 Table. Power Comparison with Partially Missing Data, When the Relevant Covariates
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S6 Table. Power Comparison with Partially Missing Data, When All Relevant Covariates
Are Included in the Fitted Model, Where Traits Are Generated by the Liability Threshold
Model.

(PDF)

PLOS Genetics | DOI:10.1371/journal.pgen.1006329 October 3, 2016 25/28


http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s008

@’PLOS | GENETICS

CERAMIC: Case-Control Association Mapping in Related Samples

S7 Table. Power Comparison with Partially Missing Data, When the Relevant Covariates
Are Omitted from the Fitted Model, Where Traits Are Generated by the Liability Thresh-
old Model.

(PDF)

S8 Table. Power Comparison with Complete Data, When All Relevant Covariates Are
Included in the Fitted Model, Where Traits Are Generated by the Mixed-Effects Logistic
Model.

(PDF)

S9 Table. Power Comparison with Complete Data, When the Relevant Covariates Are
Omitted from the Fitted Model, Where Traits Are Generated by the Mixed-Effects Logistic
Model.

(PDF)

$10 Table. Power Comparison with Complete Data, When All Relevant Covariates Are
Included in the Fitted Model, Where Traits Are Generated by the Liability Threshold
Model.

(PDF)

S11 Table. Power Comparison with Complete Data, When the Relevant Covariates Are
Omitted from the Fitted Model, Where Traits Are Generated by the Liability Threshold
Model.

(PDF)

$12 Table. Power Comparison When Traits Are Generated by the Liability Threshold
Model with Shared Environment Effect and More Stringent Ascertainment.
(PDF)

$13 Table. Power Comparison When Traits Are Generated by the Liability Threshold
Model with Prevalence 1%.
(PDF)

S1 Fig. Run Time Results.
(TIF)

Author Contributions

Conceived and designed the experiments: SZ D] MSM.

Performed the experiments: SZ DJ.

Analyzed the data: SZ.

Contributed reagents/materials/analysis tools: SZ D] MSM.

Wrote the paper: SZ D] MSM.

Designed the software used in analysis: SZ D] MSM.

Contributed to the development of the analysis methods: SZ D] MSM.

References

1. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analy-
sis corrects for stratification in genome-wide association studies. Nature Genetics. 2006; 38(8):904—
909. doi: 10.1038/ng1847 PMID: 16862161

PLOS Genetics | DOI:10.1371/journal.pgen.1006329 October 3, 2016 26/28


http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s013
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006329.s016
http://dx.doi.org/10.1038/ng1847
http://www.ncbi.nlm.nih.gov/pubmed/16862161

@’PLOS | GENETICS

CERAMIC: Case-Control Association Mapping in Related Samples

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

Chanock SJ, Hunter DJ. Genomics: when the smoke clears. Nature. 2008; 452(7187):537-538. doi:
10.1038/452537a PMID: 18385720

Newman DL, Abney M, McPeek MS, Ober C, Cox NJ. The importance of genealogy in determining
genetic associations with complex traits. The American Journal of Human Genetics. 2001; 69(5):1146.
doi: 10.1086/323659 PMID: 11590549

Thornton T, McPeek MS. Case-control association testing with related individuals: a more powerful
quasi-likelihood score test. The American Journal of Human Genetics. 2007; 81(2):321-337. doi: 10.
1086/519497 PMID: 17668381

McPeek MS. BLUP Genotype Imputation for Case-Control Association Testing with Related Individu-
als and Missing Data. Journal of Computational Biology. 2012; 19(6):756—765. doi: 10.1089/cmb.
2012.0024 PMID: 22697245

Whittemore AS, Halpern J, Ahsan H. Covariate adjustment in family-based association studies.
Genetic Epidemiology. 2005; 28(3):244—-255. doi: 10.1002/gepi.20055 PMID: 15593089

Laird NM, Horvath S, Xu X. Implementing a unified approach to family-based tests of association.
Genetic Epidemiology. 2000; 19(S1):S36—-S42. doi: 10.1002/1098-2272(2000)19:1+%3C::AlD-
GEPI6%3E3.3.C0O;2-D PMID: 11055368

Kang HM, Sul JH, Zaitlen NA, Kong S, Freimer NB, Sabatti C, et al. Variance component model to
account for sample structure in genome-wide association studies. Nature Genetics. 2010; 42(4):348—
354. doi: 10.1038/ng.548 PMID: 20208533

Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson DI, Heckerman D. FaST linear mixed models for
genome-wide association studies. Nature Methods. 2011; 8(10):833-835. doi: 10.1038/nmeth.1681
PMID: 21892150

Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nature
Genetics. 2012; 11(4):407-409.

Weissbrod O, Lippert C, Geiger D, Heckerman D. Accurate liability estimation improves power in
ascertained case-control studies. Nature Methods. 2015; 12:332-334. doi: 10.1038/nmeth.3285
PMID: 25664543

Hayeck TJ, Zaitlen NA, Loh PR, Vilhjalmsson B, Pollack S, Gusev A, et al. Mixed model with correction
for case-control ascertainment increases association power. The American Journal of Human Genet-
ics. 2015; 96:720-730. doi: 10.1016/j.ajhg.2015.03.004 PMID: 25892111

Papachristou C, Ober C, Abney M. Genetic variance components estimation for binary traits using mul-
tiple related individuals. Genetic Epidemiology. 2011; 35(5):291-302. doi: 10.1002/gepi.20577 PMID:
21465547

Stanhope SA, Abney M. GLOGS: a fast and powerful method for GWAS of binary traits with risk covar-
iates in related populations. Bioinformatics. 2012; 28(11):1553—1554. doi: 10.1093/bioinformatics/
bts190 PMID: 22522135

Chen H, Wang C, Conomos MP, Stilp AM, Li Z, Sofer T, et al. Control for population structure and relat-
edness for binary traits in genetic association studies via logistic mixed models. The American Journal
of Human Genetics. 2016; 98(4):653—-666. doi: 10.1016/j.ajhg.2016.02.012 PMID: 27018471

Jiang D, Zhong S, McPeek MS. Retrospective Binary-Trait Association Test Elucidates Genetic Archi-
tecture of Crohn’s Disease. Am. J. Hum. Genet. 2016; 98:243-255. doi: 10.1016/j.ajhg.2015.12.012
PMID: 26833331

Jakobsdottir J, McPeek MS. MASTOR: Mixed-Model Association Mapping of Quantitative Traits in
Samples with Related Individuals. The American Journal of Human Genetics. 2013; 92(5):652—666.
doi: 10.1016/j.ajhg.2013.03.014 PMID: 23643379

Bourgain C, Hoffjan S, Nicolae R, Newman D, Steiner L, Walker K, Reynolds R, Ober C, McPeek MS.
Novel case-control test in a founder population identifies P-selectin as an atopy susceptibility locus.
Am. J. Hum. Genet. 2003; 73:612-626. doi: 10.1086/378208 PMID: 12929084

Wang Z, McPeek MS. An Incomplete-Data Quasi-Likelihood Approach to Haplotype-Based Genetic
Association Studies on Related Individuals. JASA. 2009; 104:2151-2160.

McPeek MS, Wu X, Ober C. Best Linear Unbiased Allele-Frequency Estimation in Complex Pedigrees.
Biometrics. 2004; 60(2):359-367. doi: 10.1111/j.0006-341X.2004.00180.x PMID: 15180661

Heyde CC. Quasi-likelihood and its application: a general approach to optimal parameter estimation.
Springer Verlag; 1997.

Abney M, Ober C, McPeek MS. Quantitative-trait homozygosity and association mapping and empiri-
cal genomewide significance in large, complex pedigrees: fasting serum-insulin level in the Hutterites.
The American Journal of Human Genetics. 2002; 70:920-934. doi: 10.1086/339705 PMID: 11880950

PLOS Genetics | DOI:10.1371/journal.pgen.1006329 October 3, 2016 27/28


http://dx.doi.org/10.1038/452537a
http://www.ncbi.nlm.nih.gov/pubmed/18385720
http://dx.doi.org/10.1086/323659
http://www.ncbi.nlm.nih.gov/pubmed/11590549
http://dx.doi.org/10.1086/519497
http://dx.doi.org/10.1086/519497
http://www.ncbi.nlm.nih.gov/pubmed/17668381
http://dx.doi.org/10.1089/cmb.2012.0024
http://dx.doi.org/10.1089/cmb.2012.0024
http://www.ncbi.nlm.nih.gov/pubmed/22697245
http://dx.doi.org/10.1002/gepi.20055
http://www.ncbi.nlm.nih.gov/pubmed/15593089
http://dx.doi.org/10.1002/1098-2272(2000)19:1+%3C::AID-GEPI6%3E3.3.CO;2-D
http://dx.doi.org/10.1002/1098-2272(2000)19:1+%3C::AID-GEPI6%3E3.3.CO;2-D
http://www.ncbi.nlm.nih.gov/pubmed/11055368
http://dx.doi.org/10.1038/ng.548
http://www.ncbi.nlm.nih.gov/pubmed/20208533
http://dx.doi.org/10.1038/nmeth.1681
http://www.ncbi.nlm.nih.gov/pubmed/21892150
http://dx.doi.org/10.1038/nmeth.3285
http://www.ncbi.nlm.nih.gov/pubmed/25664543
http://dx.doi.org/10.1016/j.ajhg.2015.03.004
http://www.ncbi.nlm.nih.gov/pubmed/25892111
http://dx.doi.org/10.1002/gepi.20577
http://www.ncbi.nlm.nih.gov/pubmed/21465547
http://dx.doi.org/10.1093/bioinformatics/bts190
http://dx.doi.org/10.1093/bioinformatics/bts190
http://www.ncbi.nlm.nih.gov/pubmed/22522135
http://dx.doi.org/10.1016/j.ajhg.2016.02.012
http://www.ncbi.nlm.nih.gov/pubmed/27018471
http://dx.doi.org/10.1016/j.ajhg.2015.12.012
http://www.ncbi.nlm.nih.gov/pubmed/26833331
http://dx.doi.org/10.1016/j.ajhg.2013.03.014
http://www.ncbi.nlm.nih.gov/pubmed/23643379
http://dx.doi.org/10.1086/378208
http://www.ncbi.nlm.nih.gov/pubmed/12929084
http://dx.doi.org/10.1111/j.0006-341X.2004.00180.x
http://www.ncbi.nlm.nih.gov/pubmed/15180661
http://dx.doi.org/10.1086/339705
http://www.ncbi.nlm.nih.gov/pubmed/11880950

@’PLOS | GENETICS

CERAMIC: Case-Control Association Mapping in Related Samples

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Wang Z, McPeek MS. ATRIUM: testing untyped SNPs in case-control association studies with related
individuals. The American Journal of Human Genetics. 2009; 85(5):667—678. doi: 10.1016/j.ajhg.2009.
10.006 PMID: 19913122

Rodriguez G, Goldman N. Improved estimation procedures for multilevel models with binary response:
a case study. JRSS A. 2001; 164:339-355.

Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999; 55(4):997—1004. doi:
10.1111/j.0006-341X.1999.00997.x PMID: 11315092

Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Genome-wide
association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature.
2007; 447(7145):661-678. doi: 10.1038/nature05911

Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-
wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007; 316
(5829):1336—1341. doi: 10.1126/science.1142364 PMID: 17463249

Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes sus-
ceptibility loci identified through large-scale association analysis. Nature Genetics. 2010; 42(7):579—
589. doi: 10.1038/ng.609 PMID: 20581827

Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V, et al. Large-scale associ-
ation analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes.
Nature Genetics. 2012; 44(9):981-990. doi: 10.1038/ng.2383 PMID: 22885922

DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Asian Genetic Epidemiol-
ogy Network Type 2 Diabetes (AGEN-T2D) Consortium, South Asian Type 2 Diabetes (SAT2D) Con-
sortium, Mexican American Type 2 Diabetes (MAT2D) Consortium, Type 2 Diabetes Genetic
Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) Consortium,
Mahajan A, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic archi-
tecture of type 2 diabetes susceptibility. Nature Genetics. 2014; 46:234—244. doi: 10.1038/ng.2897
PMID: 24509480

Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, et al. Large-scale association analy-
ses identify new loci influencing glycemic traits and provide insight into the underlying biological path-
ways. Nature Genetics. 2012; 44(9):991-1005. doi: 10.1038/ng.2385 PMID: 22885924

Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K, Gibbs RA, et al. Novel Genetic Loci Identi-
fied for the Pathophysiology of Childhood Obesity in the Hispanic Population. PLoS One. 2012; 7(12):
e€51954. doi: 10.1371/journal.pone.0051954 PMID: 23251661

Yu B, Barbalic M, Brautbar A, Nambi V, Hoogeveen RC, Tang W, et al. Association of Genome-Wide
Variation with Highly Sensitive Cardiac Troponin-T (hs-cTnT) Levels in European- and African-Ameri-
cans: A Meta-Analysis from the Atherosclerosis Risk in Communities and the Cardiovascular Health
Studies. Circ Cardiovasc Genet. 2013; 6:82-88. doi: 10.1161/CIRCGENETICS.112.963058 PMID:
23247143

Ucar H, Gur M, Seker T, Kaypakli O, Elbasan Z, Koyunsev NY, et al. High-Sensitivity Cardiac Troponin
T is Associated with SYNTAX Score and Diabetes Mellitus in Patients with Stable Coronary Artery Dis-
ease. J Clin Exp Cardiolog. 2013; 4:263.

Chalasani N, Guo X, Loomba R, Goodarzi MO, Haritunians T, Kwon S, et al. Genome-Wide Associa-
tion Study Identifies Variants Associated with Histologic Features of Nonalcoholic Fatty Liver Disease.
Gastroenterology. 2010; 139:1567—-1576. doi: 10.1053/j.gastro.2010.07.057 PMID: 20708005

Kunutsor SK, Abbasi A, Apekey TA. Aspartate Aminotransferase—Risk Marker for Type-2 Diabetes
Mellitus or Red Herring? Front Endocrinol. 2014; 5:189. doi: 10.3389/fendo.2014.00189

McCullagh P, Nelder JA. Generalized linear model. vol. 37. Chapman & Hall/CRC; 1989.

PLOS Genetics | DOI:10.1371/journal.pgen.1006329 October 3, 2016 28/28


http://dx.doi.org/10.1016/j.ajhg.2009.10.006
http://dx.doi.org/10.1016/j.ajhg.2009.10.006
http://www.ncbi.nlm.nih.gov/pubmed/19913122
http://dx.doi.org/10.1111/j.0006-341X.1999.00997.x
http://www.ncbi.nlm.nih.gov/pubmed/11315092
http://dx.doi.org/10.1038/nature05911
http://dx.doi.org/10.1126/science.1142364
http://www.ncbi.nlm.nih.gov/pubmed/17463249
http://dx.doi.org/10.1038/ng.609
http://www.ncbi.nlm.nih.gov/pubmed/20581827
http://dx.doi.org/10.1038/ng.2383
http://www.ncbi.nlm.nih.gov/pubmed/22885922
http://dx.doi.org/10.1038/ng.2897
http://www.ncbi.nlm.nih.gov/pubmed/24509480
http://dx.doi.org/10.1038/ng.2385
http://www.ncbi.nlm.nih.gov/pubmed/22885924
http://dx.doi.org/10.1371/journal.pone.0051954
http://www.ncbi.nlm.nih.gov/pubmed/23251661
http://dx.doi.org/10.1161/CIRCGENETICS.112.963058
http://www.ncbi.nlm.nih.gov/pubmed/23247143
http://dx.doi.org/10.1053/j.gastro.2010.07.057
http://www.ncbi.nlm.nih.gov/pubmed/20708005
http://dx.doi.org/10.3389/fendo.2014.00189

