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Abstract

When a statistical test is repeatedly applied to rows of a data matrix, correla-

tions among data rows will give rise to correlations among corresponding test

statistics. We investigate the relationship between test-statistic correlation and

data-row correlation and discuss its implications.
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1. Introduction

Many scientific data sets are organized in matrix forms and statistical inferences—

such as hypothesis tests and regression analysis—are often repeatedly applied

to individual rows of the data matrix. For example, in gene expression anal-

ysis, normalized expression values are often organized in a matrix with rows

corresponding to genes and columns corresponding to biological samples (ex-

perimental units). In a two-group comparison experiment, a two-sample test

will be applied to each row of the data matrix in order to assess differential

expression (DE). For more complex experimental designs, regression analysis

can be used.

Correlations may exist among the data rows: For example, between-gene

correlations are commonly observed in gene expression data [1, 2, 3, 4, 5]. Data-

row correlations can give rise to correlations among the test statistic values

calculated from the data rows [6, 7, 8]. The dependence among test statistic
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values has brought methodological challenges to statistical procedures aiming to

summarize the collection of test results. For example, some multiple hypothesis

testing procedures determine a p-value cutoff by controlling the false discovery

rate (FDR) [9] or the q-value [5]. Many FDR-control procedures are valid

only when the test statistics satisfy certain independence or positive-dependence

conditions [9, 10]. Furthermore, Efron [7] showed in a simulation study that for

a nominal FDR of 0.1, the actual false discovery proportions (FDP) in individual

experiments can easily vary by a factor of 10 when there are correlations among

test statistics.

In a gene-set analysis, one tests for over-abundance of DE genes in a speci-

fied gene set (e.g., a molecular pathway or a gene ontology category) [11]. The

correlations among DE test statistics, if not addressed appropriately, will under-

mine the validity of many gene-set tests [2, 8, 12]. A better understanding of the

test-statistic correlations is thus of fundamental importance and is a first step

towards developing statistical methods that correctly account for test-statistic

correlations.

Without replicating the experiment, we cannot directly estimate the corre-

lation between a pair of test statistic values, because there is only one observed

test statistic value for each data row. For this reason, the correlation between

the corresponding data rows (after treatment effects accounted for) is some-

times used as a surrogate—explicitly or implicitly—when one actually needs

the test-statistic correlation. It is yet unclear when and to what extent the test-

statistic correlation (e.g., as measured by the Pearson correlation coefficient)

can be approximated by the corresponding data-row correlation, though some

simulation results suggest connections between the two quantities. Efron [7]

concluded through simulation that the distribution of z-value (the test statistic

considered in that paper) correlation can be nearly represented by the distribu-

tion of sample correlation from the data rows. Barry et al. [6] showed by Monte

Carlo simulation of gene expression data that a nearly linear relationship holds

between test-statistic correlations and data-row correlations for several forms of

test statistics they examined. These Monte Carlo simulation results were cited
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by Wu and Smyth [8] as a justification for estimating a variance inflation factor

from data-row correlations in order to correct for test-statistic correlations.

In this paper, we derive an analytical formula for the test-statistic correlation

as a function of the data-row correlation for a general class of test statistics—

including the familiar two-sample t-test as a special case. We use simulation

results to confirm our analytical findings. We show that 1) the test-statistic

correlation is equal to data-row correlation when the test statistic is a linear

combination of the observed data, but 2) in general, the test-statistic correla-

tion is weaker than and not well approximated by the corresponding data-row

correlation. In particular, our analytical formula reveal that 3) the test-statistic

correlation depends on whether the test statistic has an expectation of 0 (which

often corresponds to whether the null hypothesis is true). These findings urge

us to give more thoughts about correlations when trying to summarize the col-

lection of the test results.

2. Methods and Results

Suppose we have a data matrix and have applied a statistical test to individ-

ual rows of the data matrix. We will consider pairwise correlations and focus on

two rows of the data matrix: X = (X1, . . . , Xn)T and Y = (Y1, . . . , Yn)T with

mean vectors µX and µY . We will assume that the columns of the data matrix

are independent so that (Xj , Yj), j = 1, . . . , n, are independent bivariate ran-

dom variables: this assumption is usually reasonable in a designed experiment

for two-group comparison. The mean of (Xj , Yj) may vary across experimen-

tal units j = 1, . . . , n, but we assume that the population variance-covariance

structure remains the same across experimental units, that is,

Cov

Xj

Yj

 =

 σ2
X ρσXσY

ρσXσY σ2
Y

 (1)

for all j = 1, . . . , n. We consider a general class of test statistic of the form

TX =
aTX

cXSX
, TY =

aTY

cY SY
, (2)
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where a is a non-zero n-vector, (cX , cY ) are non-random constants, and (aTX,aTY )

and (SX , SY ) are independent. In particular, the familiar two-sample t-test is

of this form with SX and SY estimating σX and σY respectively. So is the t-test

for a regression coefficient in a linear regression model.

We want to investigate the connections between the test-statistic correlation

ρT = Cor(TX , TY ) and the data-row correlation ρ = Cor(Xj , Yj) (common to

all units j). First, we present an analytical formula that relates ρT to ρ.

Theorem 1. For the test statistics TX , TY in (2):

ρT =
ρσXσY E(S−1X S−1Y ) + c−1dXdY Cov(S−1X , S−1Y )√[

σ2
X E(S−2X ) + c−1d2X Var(S−1X )

] [
σ2
Y E(S−2Y ) + c−1d2Y Var(S−1Y )

] (3)

where dX = aTµX , dY = aTµY and c = aTa.

Proof. (cX , cY ) do not affect correction and can be ignored. For any (UX , UY )

that are independent of (SX , SY ), direct calculation shows that

Cov

(
UX

SX
,
UY

SY

)
= Cov(UX , UY ) E

(
1

SXSY

)
+ E(UX) E(UY ) Cov

(
1

SX
,

1

SY

)
,

and

Var

(
Ui

Si

)
= Var(Ui) E

(
1

S2
i

)
+ (E(Ui))

2
Var

(
1

Si

)
, for i = X,Y.

For this theorem, we let UX = aTX, UY = aTY , then E(UX) = aTµX ,

E(UY ) = aTµY , Var(UX) = σ2
Xa

Ta, Var(UY ) = σ2
Y a

Ta, and Cov(UX , UY ) =

ρσXσY a
Ta since the columns of the data matrix are assumed independent.

To apply equation (3) in practice, we need to compute the involved moments

of (S−1X , S−1Y ), but equation (3) offers some insights without explicit calculation

of those quantities.

Corollary 1. ρT = ρ if SX and SY are constants (i.e., not random).

Proof. When SX and SY are constants, Cov(S−1X , S−1Y ), Var(S−1X ) and Var(S−1Y )

are all 0, and E(S−1X S−1Y ) = S−1X S−1Y =
√
E(S−2X )E(S−2Y ).
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This corollary says that for z-tests, the test-statistic correlation is the same as

the corresponding data-row correlation ([6] also pointed out this). This confirms

the simulation results in [7]. Another intuition offered by equation (3) is that the

relation between ρT and ρ depends on whether one or both of aTµX and aTµY

are 0—which often corresponds to whether the corresponding null hypotheses

are true. When both aTµX and aTµY are 0, equation (3) will have a simpler

form

ρT =
ρE(S−1X S−1Y )√
E(S−2X ) E(S−2Y )

.

Intuitively, in such cases, we can expect ρT ≈ ρ in large samples if SX and SY

are “good” estimators of σX and σY : E(S−1X S−1Y ),
√
E(S−2X )E(S−2Y ) will then

both tend to σ−1X σ−1Y .

More generally, though, the test-statistic correlation ρT is not the same as

the data-row correlation ρ. Next, using the important special case of two-sample

t-test, we will further demonstrate that, in general, ρT is not well approximated

by ρ, even in large samples.

For equal-variance two-sample t-test, we let a = (− 1

n1
, . . . ,− 1

n1︸ ︷︷ ︸
n1

,
1

n2
, . . . ,

1

n2︸ ︷︷ ︸
n2

)T ,

cX = cY =
√

1/n1 + 1/n2, and S2
X , S2

Y be the pooled sample variances,

S2
i =

(n1 − 1)S2
i,1 + (n2 − 1)S2

i,2

n1 + n2 − 2
, for i = X,Y,

in (2), where S2
i,1 and S2

i,2 are the sample variances for sample 1 and sample 2

respectively in data row i. From Basu’s lemma, (aTX,aTY ) are independent

of (SX , SY ). Typically, the null hypotheses to test are dX = aµX = 0 and

dY = aµY = 0.

Theorem 2. For the equal-variance two-sample t-test, when n = n1 +n2 →∞

and n1/n→ r for some r, 0 < r < 1,

ρT →
ρ(1 + βδXδY ρ)√

(1 + βδ2X)(1 + βδ2Y )
, (4)

where δX = dX/σX , δY = dY /σY , and β = r(1− r)/2.
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Proof. As n = n1 + n2 →∞ and n1/n→ r, in equation (3),

nc = naTa = n(
1

n1
+

1

n2
)→ 1

r
+

1

1− r
and (nc)−1 → r(1− r) = 2β.

The key of the proof is to determine the limits of the moments E(S−1X S−1Y ),

E(S−2X ), E(S−2Y ), Cov(S−1X , S−1Y ), Var(S−1X ), and Var(S−1Y ). By the consistency

of (S2
X , S

2
Y ) and the continuous mapping theorem,

S−1i

p−→ σ−1i , S−2i

p−→ σ−2i , for i = X,Y, and S−1X S−1Y

p−→ σ−1X σ−1Y .

For large v (= n − 2), E(S−4i ) = σ−4i v2/(v − 2)(v − 4) < 2σ−4i , for i = X,Y.

This implies the S−1X , S−1Y , S−2X , S−2Y and S−1X S−1Y are all uniformly integrable

(note that E(S−2X S−2Y ) ≤
√

E(S−4X ) E(S−4Y )), and thus

E(S−1i )→ σ−1i , E(S−2i )→ σ−2i , for i = X,Y, E(S−1X S−1Y )→ σ−1X σ−1Y .

In Lemma 1 in the Appendix, we show that

√
v

S−1X

S−1Y

−
σ−1X

σ−1Y

 d−→ N

0

0

 ,
1

2

 σ−2X ρ2σ−1X σ−1Y

ρ2σ−1X σ−1Y σ−2Y

 . (5)

This together with the continuous mapping theorem suggests that

Var(
√
vS−1i ) = E

[
v(S−1i − σ−1X )2

]
→ 1

2
σ−2i , for i = X,Y,

Cov(
√
vS−1X ,

√
vS−1Y ) = E

[
v(S−1X − σ−1X )(S−1Y − σ−1Y )

]
→ 1

2
ρ2σ−1X σ−1Y .

For these moments limits to hold, we need to show that the involved moments are

uniformly integrable (see, e.g., Theorem 6.2 of [13]). It is sufficient to show that

E
[
(
√
v · (S−1X − σ−1X ))4

]
is bounded for large v: in Lemma 2 in the Appendix,

we show that

E
[
(
√
v · (S−1X − σ−1X ))4

]
=

3

4
σ−4X +O(v−1).

Plugging the limiting values of E(S−1X S−1Y ), E(S−2X ), E(S−2Y ), Cov(S−1X , S−1Y ),

Var(S−1X ), and Var(S−1Y ) into equation (3) gives equation (4).

In the Appendix, we will also explain how to compute ρT in finite samples

for two-sample t-test. It is mainly E(S−1X S−1Y ) that is difficult to compute.
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Theorem 2 (and equation (10) in the Appendix) reaffirms that the relation

between ρT and ρ depends on (δX , δY ) = (dX/σX , dY /σY ). Figure 1 shows the

contour plot of the limiting value of ρT when n1 = n2 →∞ (r = 1/2, β = 1/8)

as a function of (δX , δY ), for ρ = −0.7,−0.1, 0.1, 0.7. Note that ρT → ρ if

dX = dY = 0: typically, this means both null hypotheses are true. One can

show that | limn→∞ ρT | ≤ |ρ|. That is to say, in general, the test-statistic

correlation is weaker than the corresponding data-row correlation.
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Figure 1: Contour plot of the limiting values of ρT as n1 = n2 → ∞. For each ρ, the

asymptotic value of ρT is plotted as a function of (δX , δY ).
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In Figure 2, we plotted ρT as a function of ρ when n1 = n2 = 3, 10 or ∞

for a few selected values of (δX , δY ). We also added simulated values of ρT (for

n1 = n2 = 3, 10) to confirm our analytical findings: For each (δX , δY ) value, we

let ρ vary form −1 to 1 by a step size of 0.01. For each ρ, we simulated a pair

of data rows X, Y according to independent bivariate normal distributions:Xj

Yj

 ∼ N
0

0

 ,

1 ρ

ρ 1

 , j = 1, . . . , n1,

Xj

Yj

 ∼ N
δX

δY

 ,

1 ρ

ρ 1

 , j = n1 + 1, . . . , n1 + n2

and computed the two-sample t-test statistics TX and TY . H = 5000 pairs of

(TX , TY ) were simulated and their sample correlation ρ̂T were shown in Figure 2.

Let ρ∞T = lim ρT as n1 = n2 → ∞. We see from Figure 2 that when

δX = δY = 0, ρ∞T = ρ; when δX = 0, ρ∞T is a linear function of ρ; and

when δX and δY are both non-zero, ρ∞T is a quadratic function of ρ. These

features are predictable from the analytical formula (4) in Theorem 2 and they

hold approximately in finite samples if n is large. In fact, we see that when

n1 = n2 = 10, the ρT values are already remarkably close to ρ∞T .

In small samples (e.g., n1 = n2 = 3), there is more difference between

ρT and ρ∞T : ρT is often weaker than ρ∞T (i.e., |ρT | < |ρ∞T |) with a couple of

exceptions (e.g., when δX = ±5, δY = 5), which is reasonable since (S2
X , S

2
Y )

are “noisier” in small samples and noise in general reduces correlation. When

both δX and δY are non-zero (this typically means both null hypotheses are

false), ρ does not approximate ρT well no matter what the sample size is: |ρ|

can significantly overestimate |ρT |. In extreme cases when δXδY is big, ρT and

ρ can have opposite signs.

3. Conclusion and discussion

This article discusses the relation between test-statistic correlation ρT and

the corresponding data-row correlation ρ. Our results indicate that only in
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Figure 2: Test-statistic correlation ρT versus data-row correlation ρ at different (δX , δY )

values, when n1 = n2 = 3, 10, or ∞. The simulated values of ρT are also shown for n1 =

n2 = 3 and 10. The solid (smooth) lines represent theoretical value, and dashed (jagged) lines

represent simulated values.
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limited settings, ρT can be well approximated by ρ: for example, ρT = ρ for z-

test and ρT ≈ ρ in large samples if both null hypotheses are true. For two-sample

t-test, the relation between ρT and ρ will depend on (δX , δY ), the expected mean

differences divided by the respective standard deviations of the data rows. When

δX and δY are both non-zero, ρT is a quadratic function of ρ, ρT can be much

weaker than ρ (|ρT | < |ρ|), and ρT and ρ can sometimes have opposite signs.

Our findings have practical implications in statistical inferences aiming to

summarize the collection of test results. For example, our results indicate that

it is not reliable to approximate the distribution of test-statistic correlations

by the distribution of data-row correlations if we expect the null hypotheses

to be false for a significant proportion of the rows—which is often the case in

gene expression analysis. If one wants to assess the null distribution of the test-

statistic p-values by permuting the columns of the data matrix, then one has to

realize the permutation will also change the correlations among the test-statistic

values (since (δX , δY ) values will change after each permutation). In separate

ongoing work, we are delving into these and related issues to better understand

the impact of test-statistic correlation on gene set enrichment analysis, where

one wants to test for overabundance of DE genes in a pre-specified set ([14] is

one such attempt).

Wu and Smyth [8] discussed a variance inflation factor (VIF) which is use-

ful when estimating the variance of the sum or average of m test statistics

t1, t2, . . . , tm when the corresponding genes (data rows) are correlated. In that

paper, VIF is defined as 1 + (m− 1)ρ̄T , where ρ̄T is the average of test-statistic

correlations (i.e., ρT ’s) over all pairs of data rows in the set. (If all ti’s have the

same variance τ2, then Var(t̄) = VIF · τ2/m.) It was mentioned that ρ̄T can

be estimated by the average of data-row correlations. Our results indicate that

replacing test-statistic correlations by data-row correlations will not be accurate

if there are mean differences between the two groups among the data rows. For

example, if we consider the two-sample t-test performed on m = 21 data rows

in a matrix with correlated data rows (ρ = 0.1 for all pairs, variance σ2 = 1

for all rows) and mean differences ranging from −3 to 3 (uniformly spaced, i.e.,
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δ = −3,−2.4,−1.8, ..., 3 for the 21 rows) between two groups (n1 = n2 = 30),

then the true VIF value computed using test-statistic correlations (which we

can compute using asymptotic formula (4) in Theorem 2) should be 2.48; the

VIF computed using the data-row correlations is 3.00, which overestimates the

true VIF by 21%. In practice, we can estimate ρT for each pair of data rows by

plugging the corresponding estimated values of ρ, d, σ values into equation (4).

In the Appendix, we use a simulation to show that estimating VIF using es-

timated ρT values will outperform approximating ρT by the sample data-row

correlations.

One reviewer asked whether our results apply to the moderated t-test where

the variance estimation is based on a shrinkage method. The short answer is

“no”. It is difficult to derive an analytical formula for the correlation between

a pair of moderated t-test statistic values where a shrinkage method is used for

estimating the variances of the test-statistic values, since information from all

data rows are used for estimating the variances. Through a simple simulation

where we applied moderated t-test in the limma package ([15]), we observed

that the test-statistic correlations among moderated t-test statistic values still

depend on δX and δY , but the relationship between test-statistic correlations

and data-row correlations do not follow the analytical formula that we derived

in Theorem 2. In particular, we observed that for moderated t-test, the test-

statistic correlations tend to be greater than the data-row correlations in some

cases where δX = δY 6= 0. For the usual two-sample t-test statistic, we have

shown earlier that the magnitude of test-statistic correlation tends to be less

than that of the data-row correlation. We included the details on the simulation

settings and results of this simulation on moderated t-test in the Appendix.

In this paper, we assumed that the columns of the data matrix are inde-

pendent and the explicit formula mainly focused on the two-sample t-test. We

believe these are good starting points for discussing this complex issue of test-

statistic correlations resulting from data-row correlations. In the future, we plan

to extend our investigation into more general settings: for example, the test for

regression coefficients in a generalized linear model.
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The R codes for reproducing the results in this paper are available at Github:

https://github.com/zhuob/CorrelatedTest.
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Appendix

Lemmas for Theorem 2

We prove two lemmas for Theorem 2 under the theorem’s conditions and

specifications:

Lemma 1. The asymptotic distribution of (S−1X , S−1Y )T is given by (5).

Proof. For the pooled variances in the two data rows X and Y ,

(n− 2)

S2
X

S2
Y

 = (n1 − 1)

S2
X,1

S2
Y,1

+ (n2 − 1)

S2
X,2

S2
Y,2


Let

Zn,s =
√
ns − 1

S2
X,s

S2
Y,s

−
σ2

X

σ2
Y

 , for s = 1, 2.

Then

Zn =
√
n− 2

S2
X

S2
Y

−
σ2

X

σ2
Y

 = αn,1Zn,1 + αn,2Zn,2,

where αn,1 =
√
n1 − 1/

√
n− 2→

√
r, αn,2 =

√
n2 − 1/

√
n− 2→

√
1− r.

From the central limit theorem (or the property of MLE), as n1, n2 → ∞,

Zn,1 and Zn,2 are both asymptotically normally distributed as

N

0

0

 , 2

 σ4
X ρ2σ2

Xσ
2
Y

ρ2σ2
Xσ

2
Y σ4

Y

 (6)

Zn,1’s and Zn,2’s are independent. So Zn = αn,1Zn,1 + αn,2Zn,2 converges to

the same distribution in (6) by Slutsky’s theorem and the continuous mapping

theorem (note that α2
1 + α2

2 = 1).

Letting g(x) = x−
1
2 and applying delta method to the asymptotic distribu-

tion (6) of Zn, we obtain (let v = n− 2)

√
v

S−1X

S−1Y

−
σ−1X

σ−1Y

 d−→ N

0

0

 ,
1

2

 σ−2X ρ2σ−1X σ−1Y

ρ2σ−1X σ−1Y σ−2Y

 . (7)
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The next lemma shows that E
[
(
√
v · (S−1X − σ−1X ))4

]
is bounded for large v.

Lemma 2.

E
[
(
√
v · (S−1X − σ−1X ))4

]
=

3

4
σ−4X +O(v−1)

Proof. For the pooled sample variance, S2
X , in the equal-variance two-sample

t-test, QX = vS2
X/σ

2
X ∼ ChiSq(v) with v = n− 2 degrees of freedom, and

S2
X =

σ2
X ·QX

v
,

S−1X =

(
σ2
X ·QX

v

)−1/2
=
√
v · σ−1X ·Q

−1/2
X ,

√
v · (S−1X − σ−1X ) =

√
v · σ−1X · (

√
v ·Q−1/2X − 1).

For a chi-square random variable with v degrees of freedom, Q ∼ ChiSq(v),

E(Qk) =
2kΓ( v

2 + k)

Γ( v
2 )

, for v/2 + k > 0. (8)

For large v, using expansion (12) on page 138 of [16] with z = v/2, α = k and

β = 0 (see also the equivalent expansion (5.02) on page 119 of [17]), we see that

Γ(v
2 + k)

Γ( v
2 )

=
(v

2

)k
·
(

1 +
k(k − 1)

v
+
k(k − 1)(3(k − 1)2 − k − 1)

6v2
+O(v−3)

)
.

(9)

Letting k = −1/2,−1,−3/2, and −2, it then follows from (8) and (9) that

E
[(√

v ·Q−1/2X

)]
= 1 +

3

4v
+

25

32v2
+O(v−3),

E

[(√
v ·Q−1/2X

)2]
= 1 +

2

v
+

4

v2
+O(v−3),

E

[(√
v ·Q−1/2X

)3]
= 1 +

15

4v
+

385

32v2
+O(v−3),

E

[(√
v ·Q−1/2X

)4]
= 1 +

6

v
+

28

v2
+O(v−3),

and thus

E

[(√
v ·Q−1/2X − 1

)4]
=

3

4v2
+O(v−3).
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E
[
(
√
v · (S−1X − σ−1X ))4

]
= v2 · σ−4X · E

[(√
v ·Q−1/2X − 1

)4]
= v2 · σ−4X ·

(
3

4v2
+O(v−3)

)
=

3

4
σ−4X +O(v−1).

Compute ρT in finite samples

It follows from (8) that for v > 2,

E(S−2X ) = Avσ
−2
X , E(S−1X ) = Bvσ

−1
X ,

where

Av =
v

v − 2
, Bv =

√
v

2

Γ( v
2 −

1
2 )

Γ(v
2 )

,

and thus

Var(S−1X ) = (Av −B2
v)σ−2X .

For bivariate normal data, Joarder [18] derived a formula (Theorem 3.1 on page

586 of that paper) for computing product moments of the form E(Qa
XQ

b
Y ) as

infinite sums, for (QX , QY ) = (vS2
X/σ

2
X , vS

2
Y /σ

2
Y ):

E(Qa
XQ

b
Y ) = 2a+b(1− ρ2)a+b+v/2

×
∑

k=0,2,4,...

(2ρ)k
Γ

(
k + v

2
+ a

)
Γ

(
k + v

2
+ b

)
Γ

(
k + 1

2

)
√
πk!Γ

(
k + v

2

)
Γ
(v

2

) .

So we can numerically compute Cv(ρ) = vE(Q
−1/2
X Q

−1/2
Y ) (for v > 2)—which

depends on ρ. Then

E(S−1X S−1Y ) = Cv(ρ)σ−1X σ−1Y ,

Cov(S−1X , S−1Y ) = (Cv(ρ)−B2
v)σ−1X σ−1Y ,
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and equation (3) becomes

ρT =
ρCv(ρ) +

1

vc
δXδY v(Cv(ρ)−B2

v)√(
Av +

1

vc
v(Av −B2

v)δ2X

)(
Av +

1

vc
v(Av −B2

v)δ2Y

) . (10)

One can show that, under the conditions of Theorem 2, as v = n − 2 → ∞,

vc → 1

r(1− r)
, Av → 1, Bv → 1, and v(Av − B2

v) → 1/2, and thus E(S−1X ) →

σ−1X and Var(
√
vS−1X ) → 1

2σ
−2
X . The asymptotic result in Theorem 2 suggests

that as v →∞,

Cv(ρ)→ 1, v(Cv(ρ)−B2
v)→ 1

2
ρ2,

but we did not find a direct analytical proof for these limits.

Estimating the variance inflation factor

The variance inflation factor (VIF) for a set of m test statistics, t1, . . . , tm,

is defined as

1 + (m− 1)ρ̄T ,

where ρ̄T is the average of all pairwise test-statistic correlations (ρT ’s). In the

case of two-sample t-test, given the data-row correlations and mean differences

between the two groups in all data rows, we can use equation (4) to compute

ρT for all row pairs, and in turn the VIF. If we consider the two-sample t-

test performed on m = 21 data rows in a matrix with correlated data rows

(ρ = 0.1 for all pairs, variance σ2 = 1 for all rows) and mean differences rang-

ing from −3 to 3 (uniformly spaced, i.e., δ = −3,−2.4,−1.8, ..., 3 for the 21

rows) between two groups (n1 = n2 = 30), the true VIF value computed using

test-statistic correlations should be 2.48; the VIF computed using the data-row

correlations is 3.00, which overestimates the true VIF. In practice, for each data

row i = 1, ...,m, the mean difference di can be estimated by sample mean differ-

ence. Let rTi = (ri1, ..., rin) be the vector of residuals after fitting the two group

means, then σi can be estimated by si =

√
rTi · ri
(n− 2)

. Between a pair of data rows

i = X,Y , the data-row correlation ρ can be estimated by the sample correlation
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coefficient between the residual vectors rX and rY , and the test-statistic corre-

lation ρT is estimated by plugging in estimated values of ρ, dX , dY , σX , σY into

equation (4). We simulated H = 5000 data matrices with the above specified

m, n1, n2, ρ, and δ values, and estimated VIF by either using the estimated

test-statistic correlations or directly replacing the test-statistic correlations by

the estimated data-row correlations. Figure 3 summarizes the histograms of the

estimated VIF values. We can see using the estimated ρT values to compute

the VIF gives less biased results; using the data-row correlations in place of the

test-statistic correlations tends to overestimate the VIF.

Figure 3: Histograms of the VIF values estimated by estimating ρT for all pairs (left) or by

replacing ρT by corresponding sample data-row correlations (right). The vertical line indicates

the true VIF value of 2.48.

Pairwise correlations among moderated t-test statistic values

We use simulation to examine pairwise test-statistic correlations for the mod-

erated t-test as implemented in the R package limma ([15]) when the data rows

are correlated. When computing the moderated t-statistic, the variance esti-

mations for the data rows are shrunk towards a common value. Effectively, the

variance estimation for each data row draws information from all data rows.

This makes deriving an analytical formula for the pairwise test-statistic corre-
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lation difficult.

To examine the correlation among test statistic values, we need to simulate

multiple data sets. To see the effect of shrinkage, it is also necessary that we

simulate many data rows in each data set. In each data set, we simulated 1000

rows of normal data from two samples of size 10 each—resulting in a 1000× 20

data matrix. In the control group (first 10 columns), the mean was set to 0; in

the treatment group (the last 10 columns), the mean was simulated to be −3 for

rows 1–50, 2 for rows 51–100, and 0 for rows 101–1000 respectively. The vari-

ance was 1 for all data points, the correlation between any pair of data rows was

simulated to be ρ = 0.1 or ρ = 0.5. We simulated H = 10000 date sets under

each ρ value. To fix ideas, one can think each simulated data set as represent-

ing normalized (log-transformed) gene expression data from microarrays. The

different mean levels under treatment ({−3, 2, 0}), represent different degrees of

differential expression (DE). The parameter settings were kept simple here—3

DE classes (δX , δY ∈ {−3, 2, 0}) and a constant data-row correlation (ρ = 0.1 or

0.5)—just enough to reveal the connection between data-row correlations and

test-statistic correlations as (δX , δY ) vary.

In each data set, the moderated t-statistic value was computed for each

row. Pairwise sample test-statistic correlations were then computed over the

10000 independently simulated data sets—giving a 1000× 1000 matrix of sam-

ple pairwise test-statistic correlations. We grouped these pairwise test-statistic

correlations according to (δX , δY ) values and summarized the distribution in

each group in Figure 4 (data-row correlation is fixed at ρ = 0.1 or ρ = 0.5). The

main conclusions are:

1. Test-statistic correlations are generally not same as data-row correlations

and their relationship depends on the DE statuses (i.e., depending on (δX , δY )

values)—this is similar to the standard two-sample t-test case that we explored

in the paper.

2. However, the relationship between test-statistic correlation and data-row

correlation does not follow the analytical formula derived for the two-sample

t-test case. In particular, we see that when both data rows are from the same
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DE class (δX = δY = −2 or δX = δY = 3), the test-statistic correlations tend

to be greater than the data-row correlation. For the usual two-sample t-test

statistic, we have seen earlier that the magnitude of test-statistic correlation

tends to be less than that of the corresponding data-row correlation.
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Figure 4: Distribution of pairwise sample test-statistic correlations for the moderated-t test.

The pair-wise test-statistic correlations are grouped by the (unordered) values of (δX , δY ) and

the distribution in each group is plotted. The data-row correlation is fixed for all pairs at

ρ = 0.1 (left panel) or ρ = 0.5 (right panel) and is indicated by the vertical line in each plot.
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