
Figure Captions

FIGURE 1. Examples of terrain simulations produced by CHILD. Thin solid lines are contours, heavy lines 
indicate drainage lines, and gray lines show the triangular computational mesh. (A) simulation of gullying on an 
actual watershed (unnamed watershed on Fort Carson in the foothills of the Colorado Front Range near Colorado 
Springs). (B) hypothetical fault-bounded mountain range. (C) valley and floodplain development, illustrating 
meandering stream with variable-resolution mesh. (D) rising mountain block and alluvial fans. Scales in (B), (D), 
and (D) are nominally 10 km, 1 km, and 2.5 km, respectively.

FIGURE 2. Overview of components in the CHILD model.

FIGURE 3. Elements of the irregular computational mesh, showing nodes (solid circles), triangle edges (black 
lines), and Voronoi polygons (gray lines). Each Voronoi polygon acts as a finite volume cell. (A) Streamflow is 
routed downslope from node to node along triangle edges, following the route of steepest descent. (B) Two-
dimensional diffusive exchange of sediment between node N and its neighbors. The diffusive mass flux per unit 
width between any two nodes is computed using the gradient between them; multiplying by the width of their 
shared Voronoi polygon edge gives the total mass exchange rate.

FIGURE 4. Schematic illustration of Poisson rectangular pulse rainfall model (after Eagleson, 1978).

FIGURE 5. Flow chart illustrating the sequence of computations in CHILD.

FIGURE 6. Example of simulated gully erosion and healing in response to stochastic variations in rainfall 
intensity and duration. Here, a gully system forms and begins to heal on a planar slope (30 degrees, 100 by 100 
meters) that is subjected to a series of random storm events. The landscape is highly sensitive to extreme events, 
owing to a large threshold for runoff erosion (τc) and a high soil erodibility coefficient (kb). (A) Time series of 
rainfall events (durations not shown). (B) Mean elevation of the surface through time, highlighting the episodic 
nature of denudation. Arrows indicate the times corresponding to plots C and D. (C) Perspective plot of slope 
immediately after the last gully-forming episode. (D) Perspective plot at the end of the simulation. (E) and (F) 
show contour plots at these two time slices. Equation set used in this run is  (m/yr), with 

 (Pa), τc = 20 Pa, and W = 0.001 Q0.5 with Q in m3/s. Rainfall parameters are  
mm/hr,  hr, and  hr; hillslope diffusivity (kd) is 0.01 m2/yr.

FIGURE 7. The influence of runoff-production mechanism on terrain morphology. (A) Simulated drainage basin 
under infiltration-excess (Hortonian) runoff production (Eq (3)). (B) Simulated basin under saturation-excess 
runoff production, using the O’Loughlin (1986) model (Eq (6)). (C) and (D) plots of surface slope versus 
contributing area for the two cases. The line in (D) represents the line of saturation for the mean-intensity storm: 

. In these examples runoff erosion is modeled as . Other 
parameters are  mm/hr,  yr,  yr, kd = 0.01 m2/yr, U = 0.1 mm/yr, and in (B) 

 m2/yr.

FIGURE 8. Slope-area plots from two simulations illustrating a downstream transition from detachment-limited 
to transport-limited behavior under (A) constant runoff and (B) variable (stochastic) runoff. Both simulations are 
in equilibrium with a constant and spatially uniform rate of baselevel fall; the transport and erosion coefficients 
are adjusted so that the theoretical transition point occurs at the same drainage area in both cases. Although fluvial 
erosion theory predicts that such a transition should occur in many rivers, the result shown in (B) implies that 
transitions may be so smooth as to be undetectable in data.

FIGURE 9. Example of a simulated mountain-fan system, showing progradation of a set of alluvial fans in 
response to block uplift along a vertical fault. The substrate is treated as a cohesionless sediment pile containing a 
mixture of sand and gravel sediment fractions. Colors indicate the relative proportion of sand in the uppermost 
(active) sediment layer. (A) 20,000 years after onset of uplift; (B) 40,000 years; (C) 100,000 years. Inset in (C) 
shows the location of cross-sections in Figure 10. Uplift rate is 1 mm/yr, diffusivity is 0.01 m2/yr, and rainfall 
parameters are  mm/hr,  yr, and  yr.

dz dt⁄– 505 τ τc–( )=
τ 0.62 Q W⁄( )2 3⁄

S
2 3⁄

= P 0.64=
Tr 32= Tb 148=

S P Twv( )⁄( )A= dz dt⁄– 1.44 10
5–⋅( )Q

0.5
S=

P 2.9= Tr 5= Tb 95=
T 1.02 10

5⋅=

P 1.1= Tr 3= Tb 97=



FIGURE 10. Stratigraphic cross-sections through the fan complex in Figure 9. Sections A-C are taken normal to 
the strike of the range through the center of the fan complex (indicated by a-a’ in Figure 9C) (note differences in 
vertical scales in A, B, C). Color scale for A-C is the same as in Figure 9. (D) shows transverse section at 1 km 
from the basin edge (b-b’ in Figure 9C inset).

FIGURE 11. Illustration of right bank ( ) erodibility determination for node i. Eeff,i1 and Eeff,i2 are 
effective erodibilities with respect to node i at adjacent nodes that are distances, d1 and d2, respectively, from the 
line parallel to the unit vector, . In the coordinate system shown, the s-direction is parallel to the flow edge, and 
the n-direction is perpendicular to the flow edge. Delaunay triangulation is in thin solid lines; Voronoi diagram is 
in dashed lines; and flow edges are in heavy black.

FIGURE 12. Flow chart showing the implementation of meandering.

FIGURE 13. Simulation of channel meandering and floodplain development. (A) Perspective view of simulated 
topography, highlighting stream pattern and development of terraces. (Elevations are interpolated to regular grid 
for plotting purposes). (B) View of triangulated mesh, showing densification in the area of the floodplain. (See 
text for details).
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Figure 9c
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