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Abstract

We describe a new set of data structures and algorithms for dynamic terrain modeling using a triangulated irregular

network (TINs). The framework provides an efficient method for storing, accessing, and updating a Delaunay
triangulation and its associated Voronoi diagram. The basic data structure consists of three interconnected data objects:
triangles, nodes, and directed edges. Encapsulating each of these geometric elements within a data object makes it

possible to essentially decouple the TIN representation from the modeling applications that make use of it. Both the
triangulation and its corresponding Voronoi diagram can be rapidly retrieved or updated, making these methods well
suited to adaptive remeshing schemes. We develop a set of algorithms for defining drainage networks and identifying

closed depressions (e.g., lakes) for hydrologic and geomorphic modeling applications. We also outline simple numerical
algorithms for solving network routing and 2D transport equations within the TIN framework. The methods are
illustrated with two example applications, a landscape evolution model and a distributed rainfall-runoff
model. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Continuing advances in computing technology
have made terrain-based modeling an attractive
approach for numerous geologic and hydrologic

applications. Distributed modeling of processes occur-
ring on or near a topographic surface has been widely
used, for example, in watershed hydrology (e.g., Garrote

and Bras, 1995; Julien et al., 1995; Jackson
et al., 1996), landscape evolution (e.g., Willgoose
et al., 1991; Howard, 1994; Johnson and Beaumont,

1995; Tucker and Slingerland, 1997; Tucker and Bras,

1998), soil erosion (e.g., Laflen et al., 1997; Mitas

and Mitasova, 1998), slope stability analysis (e.g.,
Montgomery and Dietrich, 1994), and volcanology
(e.g., Miyamoto and Sasaki, 1997), among other
applications. Although the nature of these models

ranges from real-time prediction of runoff in actual
drainage basins (e.g., Garrote and Bras, 1995) to
hypothetical simulation of mountain range evolution

over millions of years (e.g., Tucker and Slingerland,
1996), all of them share the common theme of
simulating flow } whether of water, sediment, or

magma } across (or near) a topographic surface. The
need to model flow over terrain gives rise to three
common elements among these otherwise disparate

models: (1) division of a terrain surface into a set of
discrete, connected elements, (2) application of con-
tinuity of mass within each terrain element, and (3)
definition of flow pathways and networks across this

discretized terrain surface.
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A number of different strategies have been used for
terrain discretization, including regular grids, triangu-

lated irregular networks (TINs), sub-watersheds, con-
tour elements (e.g., Moore et al., 1988), and hillslope
partitions (e.g., Band, 1989). Among these, only regular

grids and TINs are well suited for simulating the
dynamics of surface change. The simplicity of regular
grids and the increasing availability of grid-based digital
elevation models (DEMs) have made fixed grids the

framework of choice in most hydrologic models and
nearly all geomorphic models (a notable exception being
the CASCADE model of Braun and Sambridge (1997)).

However, grid-based discretization schemes suffer from
a number of distinct disadvantages: (1) landform
elements must be represented at a constant spatial

resolution, which in practice means the highest resolu-
tion required by any feature or process of interest; (2)
drainage directions are restricted to 458 increments

(though for watershed-scale applications, this limitation
may be reduced by using multiple-flow algorithms, e.g.,
Freeman, 1991; Quinn et al., 1991; Costa-Cabral and
Burges, 1994; Tarboton, 1997); (3) under certain

circumstances, use of a regular grid introduces aniso-
tropy that can lead to bias in simulated drainage
network patterns (Braun and Sambridge, 1997); and

(4) use of a fixed grid makes it difficult or impossible to
model geologic processes that have a significant
horizontal component, such as stream meandering or

fault displacement.
The last of these constraints is especially significant in

the context of geological models. Although we con-
ventionally speak of ‘‘uplift’’, most crustal deformation

processes involve a significant amount of horizontal
translation. Previous coupled models have either in-
corporated only the vertical component of deforma-

tion (e.g., Tucker and Slingerland, 1996; Kooi and
Beaumont, 1996) or have represented lateral translation
by simply offsetting two fixed grids (e.g., Anderson,

1994). Coupled models of deformation, erosion, and
sedimentation promise to yield important insights into
such issues as the relationship between tectonic behavior

and the stratigraphic record, but such models ultimately
require the ability to model deformation in three
dimensions. Similarly, erosional processes often have a
significant horizontal component that is neglected in

current models. One of the most important horizontal
erosion processes is lateral stream erosion, which by
widening a valley can significantly alter the depositional

geometry within a floodplain over geologic time.
These and other disadvantages have motivated the

development of terrain models based on TINs, which

allow for variable spatial resolution, lend themselves
naturally to interpolation procedures (e.g., Sambridge
et al., 1995), and make dynamic rediscretization a real

possibility (e.g., Braun and Sambridge, 1997; Lancaster,
1998). Despite these advantages, however, use of TIN-

based dynamic models has not been widespread, in part
because of the increased complexity of data structures

and algorithm development in a TIN framework. In this
paper, we present an efficient set of data structures and
algorithms for TIN-based modeling using the Delaunay

triangulation criterion. These data structures and algo-
rithms take advantage of the unique capabilities of
object-oriented programming languages such as C++
to provide a general framework for (1) storing and

rapidly accessing information about mesh connectivity,
(2) constructing and updating mesh geometry, (3)
computing mass fluxes and maintaining continuity of

mass within mesh elements using a finite-difference or
finite-volume approach, and (4) establishing drainage
pathways across the terrain surface. We present example

applications and briefly discuss the use of adaptive
meshing to simulate lateral stream channel migration.

2. Delaunay triangulation and Voronoi diagrams

A number of methods for triangulating a set of

irregularly spaced points have been proposed. Here, we
focus on the commonly used Delaunay triangulation,
which offers a number of distinct advantages over other

tessellation schemes (Watson and Philip, 1984). Delau-
nay triangulations and their corresponding Voronoi
diagrams are well established in the field of computa-

tional geometry (e.g., Guibas and Stolfi, 1985; Sloan,
1987; Knuth, 1992; Sugihara and Iri, 1994; Sambridge
et al., 1995; Du, 1996). The Delaunay triangulation of a

set of points Ni is a unique triangulation having the
property that a circle passing through the three points of
any triangle will encompass no other points. A
Delaunay triangulation therefore minimizes the max-

imum interior angles, providing the most ‘‘equable’’
triangulation of a given set of points. From any
Delaunay triangulation it is also possible to construct

a unique corresponding Voronoi (or Thiessen) diagram,
which is the set of polygons formed by connecting
the perpendicular bisectors of the triangles

(Fig. 1). Although Voronoi polygons have been ignored
in most TIN-based models, they have the advantage of
providing a natural framework for numerical modeling
using finite-volume and finite-difference methods.

3. Mesh elements and data structures

A terrain surface can be represented by a set of nodes
N that are connected to form a mesh of triangles using

the Delaunay triangulation of N. Each node Ni is
associated with a Voronoi polygon of area Ai (Fig. 1).
The Voronoi polygon for a node Ni is the region within

which any arbitrary point Q would be closer to Ni than
to any other node on the mesh. The boundaries between
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Voronoi polygons are lines of equal distance between
adjacent nodes. The vertices of the Voronoi polygons
(here termed Voronoi vertices) coincide with the circum-

centers of the triangles; in general, each triangle is
associated with one and only one Voronoi vertex.
Unlike regular grids, in which each node is connected

to either four or eight adjacent neighbors, the number of

neighbors connected to a given node in a Delaunay
triangulation may in theory be arbitrarily large. Ideally,
a data structure should represent this variable connec-

tivity in a way that (1) provides rapid access to adjacent
mesh elements without demanding excessive storage
space, and (2) is flexible enough to handle dynamic

changes in the mesh itself. For dynamic modeling
applications, an additional requirement is the need to
maximize computational speed. These requirements are

satisfied through the use of the following data structure.
The ‘‘dual edge’’ structure is adapted from the quad
edge data structure of Guibas and Stolfi (1985), and
consists of three geometric elements: nodes, triangles,

and directed edges. The data structure is illustrated in
Fig. 1 and summarized in pseudo-code form in Fig. 2.

3.1. Directed edges

Each triangle edge is associated with two directed
edges, which share the same endpoints but are oriented
in opposite directions (Fig. 1). A directed edge is defined
by its origin and destination nodes; two directed edges

that share the same endpoints are termed complementary
edges. Each directed edge data object includes a pointer
to its origin node, a pointer to its destination node, and a

pointer to the directed edge that lies immediately
counter-clockwise relative to its origin node (Figs. 2, 3
and Table 1). (Here, we use the term pointer to refer to

any reference to another data object, whether imple-
mented as a memory address, an array index, or by some

other means.) Including a pointer to the counter-
clockwise edge makes it possible to rapidly access all

of the edges and neighboring nodes connected to any
given node.
Each directed edge data object also includes the

coordinates of the Voronoi vertex associated with the

triangle on its right-hand side (clockwise) (Fig. 1).
Pseudo-code for the directed-edge data structure is
given in Fig. 2, and an example list of edges for a

simple mesh (Fig. 3) is given in Table 1. Complementary
directed edges are stored pairwise on the list (Table 1),
which makes it simple to retrieve the complement of

any given edge. In addition, certain operations such
as length and slope calculation only need to be
performed for one member of each edge pair, with the

result simply assigned to the other. Storing directed
edges pairwise makes it easy to do this by skipping
every other edge on the list. In addition to topologic

Fig. 1. Illustration of dual edge data structure, showing triangular lattice (black) and corresponding Voronoi diagram (gray). (A)

Directed edge AB (black arrow), its counterclockwise neighbor AC (gray arrow), and its right-hand Voronoi vertex a. (B) Directed

edge BA (black arrow), its counterclockwise neighbor BD (gray arrow), and its right-hand Voronoi vertex b.

Fig. 2. Pseudo-code summary of dual edge data structure,

showing data members belonging to Node, DirectedEdge, and

Triangle objects.
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information, a directed edge object might also include
geometric properties such as length, gradient, and the

length of the associated Voronoi polygon edge (or
Voronoi edge).

3.2. Nodes

Each node data object includes x, y, z coordinates,

the number of neighboring nodes, and a pointer to
one of its directed edges (that is, any one of the directed
edges which originates at the node, here referred to
as a spoke of that node) (Figs. 2, 3 and Table 2). Note

that a pointer to a single spoke is all that is needed to
fully describe the connectivity among nodes. Because
each spoke points to its counter-clockwise neighbor, a

list of spokes and neighboring nodes can easily be

constructed for any node using the algorithms described
below.

For finite-volume and finite-difference applications, a
node object can also include geometric information such
as the projected surface area of its Voronoi polygon

(Voronoi area) and a flag indicating whether it lies on the
boundary or interior of the mesh. An important
advantage of an object-oriented approach in this regard
is that basic topologic and geometric data and functions

can be encapsulated within a base class, with applica-
tion-specific data and functions added as part of an
inherited class. This technique is exploited in the

examples discussed below.

3.3. Triangles

Triangle data objects include pointers to the three

nodes in the triangle, the three neighboring triangles,
and the three directed edges that are oriented clockwise
with respect to the triangle. The nodes and neighboring

triangles are numbered in such a way that the nth
neighboring triangle lies opposite the nth vertex (Fig. 4).
Each triangle is also associated with a single Voronoi

vertex, which represents the intersection of the three
Voronoi polygons belonging to the triangle’s three
nodes (Fig. 3). Here, however, the coordinates of
Voronoi vertices are stored within directed edge objects

Fig. 3. Sample mesh consisting of seven nodes, six triangles,

and 24 directed edges. Capital letters indicate nodes, numbers

T1, etc., denote triangles, and small letters indicate directed

edges. Half-arrows pointing toward destination node indicate

orientation of directed edges.

Table 1

List of directed edges for sample mesh shown in Fig. 3

Directed edge Origin node Destination node CCW edge RH Voronoi vertex

a A B c CCðT1Þ
b B A n CCðT2Þ
c A C e CCðT2Þ
d C A p CCðT3Þ
e A D g CCðT3Þ
f D A r CCðT4Þ
A
M G B l ðNULLÞ
N B G o CCðT1Þ
A

Table 2

List of nodes for sample mesh shown in Fig. 3

Node EDG No. NBRS Boundary code

A a 6 0

B o 3 1

C q 3 1

D r 3 1

E h 3 1

F w 3 1

G m 3 1

G.E. Tucker et al. / Computers & Geosciences 27 (2001) 959–973962



rather than with triangles. This represents a time-for-
space tradeoff: by storing each Voronoi vertex three
times (one for each clockwise edge) it becomes possible
to recalculate Voronoi polygon geometry quickly in

response to node addition, deletion or movement. The
list of triangles for a simple example mesh is given in
Table 3. Depending on the application, additional

geometric data for a triangle data class might include
projected area, gradient, and gradient vector (cf.
Palacios and Cuevas, 1986).

3.4. Establishing and updating node connectivity

A list of spokes or neighboring nodes can be easily
obtained using the following algorithm, here presented

in Pascal-like pseudo-code:

Node neighborList(1..thenode.nnbrs)

Edge spokeList(1..thenode.nnbrs)

Current_edge:=thenode.edg

FOR i:=1,thenode.nnbrs DO

neighborList(i):=current_edge.dest

spokeList(i):=current_edge

current_edge:=current_edge.ccwedg

END

Generally, neighbor node and spoke list retrieval
would be handled separately; they are grouped here for

simplicity. Note that creating a list (as opposed to
simply performing operations on each spoke in turn) is

usually not necessary, though it may be convenient for
performance reasons.

3.5. Updating Voronoi geometry

Once a Delaunay triangulation has been established

or updated, the associated Voronoi geometry can be
updated in a straightforward way. The first step consists
of updating and storing the Voronoi vertex coordinates,
which can be done by sweeping through the list of

triangles as follows:

FOR each triangle tri DO

Find coordinates of triangle circumcenter

FOR i:=0,2 DO

tri.e(i).vvertex_x:=x-coordinate of

circumcenter

tri.e(i).vvertex_y:=y-coordinate of

circumcenter

END

Note that for triangles with a large aspect
ratio, computing the triangle circumcenter can be
subject to numerical errors. These errors and strategies
for overcoming them are discussed by Sugihara and Iri

(1994).
Once the Voronoi vertex coordinates have been

stored, the Voronoi polygon for a given node can be

retrieved using the following simple algorithm:

FOR each node mynode DO

XYPoint voronoi_poly(1..mynode.nnbrs)

current_edge:=mynode.edg

FOR i:=1,mynode.nnbrs DO

voronoi_poly(i).x:=current_edg.rvpt.x

voronoi_poly(i).y:=current_edg.rvpt.y

END

/* use voronoi_poly to calculate Voronoi area */

END

It is also often useful to know the length of a Voronoi
polygon edge, which represents the interface between
two neighboring nodes. The width of this interface

can be used, for example, in numerical solutions to
diffusion-like transport equations, as discussed below. In
general, each triangle edge is matched by a single

Voronoi polygon edge (Guibas and Stolfi, 1985) (Figs. 1
and 3). Voronoi edge lengths are updated using the
following algorithm, which exploits the fact that edges

are stored pairwise on the list (note that this is a
projected length). The algorithm combines updating of

Fig. 4. Illustration of numbering of triangle nodes, adjacent

triangles, and clockwise edges in Triangle data objects.

Table 3

List of triangles for sample mesh shown in Fig. 3

Triangle Nodes Adjacent triangles Clockwise-oriented

edges

T1 B, A, G T6, �1, T2 n, a, l

T2 A, B, C �1, T3, T1 c, b, p

T3 C, D, A T4, T2, �1 d, r, e

T4 D, E, A T5, T3, �1 f, t, g

T5 E, F, A T6, T4, �1 h, v, i

T6 F, G, A T1, T5, �1 j, x, k
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Voronoi edge lengths, triangle edge lengths, and triangle
edge slopes:

FOR i:=1,3,5,. . .nedges�1 DO
dx:=edg(i).rvpt.x-edg(i).ccwedg.rvpt.x

dy :=edg(i).rvpt.y-edg(i).ccwedg.rvpt.y

edg(i).vedglen:=sqrt(dx*dx+dy*dy)

edg(i+1).vedglen:=edg(i).vedglen

dx:=edg(i).org.x-edg(i).dest.x

dy:=edg(i).org.y-edg(i).dest.y

edg(i).length:=sqrt(dx*dx+dy*dy)

edg(i+1).length:=edg(i).length

edg(i).slope:=(edg(i).org.z-edg(i).dest.z)/

edg(i).length

edg(i+1).slope:=�edg(i).slope
END

Note that the endpoints of the Voronoi polygon edge
are (1) the ‘‘right-hand’’ Voronoi vertex of the directed
edge and (2) the ‘‘right-hand’’ vertex of the directed

edge’s counter-clockwise neighbor. Once again a time-
for-space tradeoff is involved here: edge length, slope,
and Voronoi edge length are stored in each member of a
complementary edge pair, providing efficient access at

the expense of extra storage.

4. Drainage networks and flow routing on a triangulated

irregular mesh

An important component of hydrologic and geo-
morphic models is the routing of surface flow across a
terrain surface. Algorithms for flow routing across a

regular-grid DEM are well established and are generally
fairly straightforward (e.g., O’Callaghan and Mark,
1984; Jenson and Domingue, 1988). The irregular

geometry of a TIN surface presents some additional
challenges. A number of TIN-based drainage algorithms
have been developed for hydrologic modeling (Palacios

and Cuevas, 1986; Gandoy and Palacios, 1990; Jones
et al., 1990; Nelson et al., 1994). Most of these schemes
are ‘‘triangle-based’’ in the sense that they define flow

pathways both across and between triangles, using linear
interpolation to approximate the terrain surface gradient
within each triangle. Algorithms that use this approach
are able to delineate precisely a steepest-descent pathway

starting from any arbitrary point on the surface and,
unlike most grid-based methods, they do not limit
drainage directions to 458 increments. However, a

notable disadvantage of triangle-based methods is that
they are forced to handle flow across and between
triangles separately. The most common method for

drainage network delineation in TIN-based terrain data
consists of finding locations where adjacent triangles

slope downward toward their shared edge (e.g., Palacios
and Cuevas, 1986; Jones et al., 1990). However, this

criterion for channel identification turns out to be
somewhat arbitrary, for two reasons. First, it does not
account for the physical mechanisms or morphological

signatures of channel initiation (e.g., Montgomery and
Dietrich, 1989; Dietrich and Dunne, 1993). Second, it is
sensitive to inaccuracies in either the data or the linear

interpolation: even a slight concavity between adjacent
triangles will always be flagged as a ‘‘channel’’, while a
flat or weakly convex surface (such as a portion of a

floodplain surface) will always be flagged as a
‘‘hillslope’’.
Here, we describe a simple ‘‘Voronoi-based’’ ap-

proach to routing that avoids these problems, though at

the expense of added simplicity. Following Braun and
Sambridge (1997), flow originating at any point within a
node’s Voronoi polygon is routed downslope along the

steepest of the spokes connected to that node (Fig. 5).
By this method, the contributing area at node i is equal
to the sum of the Voronoi areas of all nodes that flow to

i (including i itself). An advantage of this approach is
that it lends itself to finite-difference modeling, because
each node has a unique watershed and drainage
direction assigned to it. The primary disadvantages

are: (1) drainage basin boundaries are defined by
Voronoi polygons rather than by triangles, and (2) flow
pathways and gradients are forced to follow triangle

edges. The first limitation can be handled by simply
clipping Voronoi polygons along a specified watershed
boundary. The second could be eliminated by adopting

a more general flow routing procedure (e.g., Tarboton,
1997), though such an extension is beyond the scope of
this paper.

4.1. Object hierarchy

The basic mesh element data structures described

above and diagrammed in Fig. 2 contain only informa-
tion relevant to the topology and geometry of the

Fig. 5. Illustration of steepest-descent flow routing in TIN

framework.
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triangulation. For a given application, of course,
additional data and functionality related to processes

(e.g., runoff) are also required. A useful advantage of an
object-oriented approach is that these process-level
attributes can be added in a hierarchical fashion,

without actually modifying the basic underlying mesh
data structures. In our case, for example, we wish to
develop an application that computes surface water flow
across a landscape. To create a data structure to

implement this application, we can define a new kind
of node data class that inherits all the properties of the
basic Node class (Fig. 2) but adds new pieces of

application-specific information:

Class WetNode: Node

flowEdge // pointer to edge along which runoff

flows out of the node

drainageArea // drainage area upstream of node

discharge // volumetric water flow exiting the

node

flowDepth // average depth of flow within the

node

In this example, the colon indicates that the WetNode

class inherits properties from the Node class. Each
WetNode object contains, in addition to the data
associated with a Node object, four additional para-

meters related to surface runoff. This type of hierarchical
design has the advantage of allowing one to create
flexible and extensible applications, and it is the method

we have used in developing the two example modeling
systems discussed below.

4.2. Flow directions and drainage areas

To identify flow directions, the steepest spoke at each

node is identified and a pointer to it is stored in
node.flowEdge. The total contributing area for each
node can then be found using the following algorithm:

Reset all drainage areas to zero

FOR each node sourceNode DO

currentNode:=sourceNode

srcArea:=source node’s Voronoi area

WHILE currentNode is neither a boundary nor a

pit DO

currentNode.drainageArea:=currentNode.

drainageArea+srcArea

currentNode:=currentNode.flowEdge.dest

This ‘‘Stream Trace’’ algorithm can also be used to

compute accumulated flow at any point, if steady-state
flow is assumed.

4.3. Resolving drainage from closed depressions

Digital elevation data, whether grid- or TIN-based,
typically contain ‘‘pits’’ (closed depressions) which
usually arise from errors in the data, poor data

resolution, or both. Various methods have been devel-
oped to remove pits from grid-based terrain data prior
to hydrologic analysis (e.g., O’Callaghan and Mark,
1984; Jenson and Domingue, 1988). Pits can also form in

dynamic landscape models, either as the result of
arbitrary initial conditions or in response to simulated
surface deformation (e.g., Howard, 1994; Tucker and

Slingerland, 1996; Braun and Sambridge, 1997). Below,
we outline an algorithm for identifying flooded regions
} depressions in which surface water would tend to

pond } and resolving outlets from those regions.
Unlike the commonly used ‘‘pit filling’’ procedures
described by O’Callaghan and Mark (1984) and Jenson

and Domingue (1988), the algorithm does not alter the
underlying topography. It is capable of identifying
clusters of nodes that form lakes, and therefore has
potential application for environmental modeling in

regions in which lakes are common (e.g., Mackay and
Band, 1998).
During the process of identifying flow directions, any

node lacking a downhill pathway is flagged as a pit.
Once all pits have been identified, the Lake Fill
algorithm (Appendix A) is invoked for each one. The

algorithm begins by creating a list of flooded nodes,
which initially contains only the starting pit. The lowest
node on the perimeter of the flooded area (‘‘lake’’) is
identified, and is tested to determine whether it can drain

downslope toward a node that is not already on the list.
If there is no drainage outlet, this ‘‘low node’’ is added
to the list of flooded nodes and the process repeats,

continuing until an outlet is found. If a node is
encountered that is part of separate lake (i.e., one
identified during a previous iteration), it is also added to

the list (in other words, initially separate lakes can
merge).
Once an outlet has been identified, all of the nodes on

the list are flagged as lake nodes, indicating, for
example, that they should be handled separately in
computing runoff and sediment routing. To maintain
the continuity of drainage networks, flow directions for

lake nodes can be resolved by iteratively tracing a flow
path upstream from the lake outlet, seeking the shortest
path to the outlet for each node (Appendix B). Once

flow directions have been resolved, the lake list is cleared
and the next pit is processed.
An example of a lake computed using the Lake

Fill algorithm is shown in Fig. 6. The algorithm is
robust enough to handle any arbitrary initial condition,
and is useful for modeling natural or artificial reservoirs

or, in geological applications, for modeling rising
baselevel.
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4.4. Ordering nodes by network position

It is often necessary to sort nodes in upstream-to-
downstream order (or the reverse) before solving water

or sediment routing equations. This is the case, for
example, in kinematic-wave runoff models (e.g., Gandoy
and Palacios, 1990) and in many landscape evolution
models (e.g., Slingerland et al., 1993; Tucker and

Slingerland, 1994; Braun and Sambridge, 1997). In the
examples presented later, node ordering is performed
using the ‘‘cascade’’ algorithm of Braun and Sambridge

(1997), which is efficient and can be easily generalized to
handle multiple flow pathways.

5. Numerical algorithms

For problems involving continuity of mass calcula-
tions (which includes most geologic and hydrologic

models), mass continuity at each node can be applied by
treating each Voronoi polygon as a finite-volume cell
(e.g., Peyret and Taylor, 1983; Versteeg and Malalase-

kera, 1995). In general, the continuity of mass equation
for a Voronoi cell may be written as

dVi
dt

¼
XNi
j¼1
Qji; ð1Þ

where Vi represents volume or mass stored at node i, Ni
is the number of neighbor nodes connected to node i,
and Qji is the total flux from node j to node i (negative if
the net flux is from i to j). Efficient numerical

implementation of Eq. (1), however, depends on how
the flux terms are defined.

5.1. One-dimensional network transport

Transport of water and sediment within drainage
networks is often modeled as a quasi-one-dimensional
problem, with the network essentially treated as a

cascade of one-dimensional stream segments. In model-
ing landscape evolution, an equation for dynamic
changes in surface elevation due to fluvial erosion or
deposition can be written as

dzi
dt

¼
Pn
j¼1Qsj

� �
�Qsi

ð1� nÞLi
; ð2Þ

where zi is the elevation at node i, t the time, n the
number of nodes that flow directly to i, Qs the sediment

flux, v the sediment porosity, and Li the Voronoi area of
node i (Braun and Sambridge, 1997; Tucker et al., 1997).
The system of ordinary differential equations described

by Eq. (2) can be solved using simple forward differencing
in time, via matrix methods, or by any similar scheme.
Solving Eq. (2) in upstream-to-downstream order ensures
that the total incoming sediment flux at any point is

always known.

5.2. Two-dimensional diffusive transport

Diffusive transport processes typically require a fully
two-dimensional solution and must therefore be handled
in a different manner. Examples of such quasi-diffusive
transport processes include groundwater flow, hillslope

sediment transport, and lava flow. In modeling 2D mass
transport on an irregular mesh using a finite-volume
approach, the width of the interface between adjacent

nodes must be known in order to compute the total mass
exchange. Consider, for example, sediment transport by
hillslope processes such as soil creep, which is frequently

modeled as a linear (e.g., Culling, 1960) or nonlinear
(e.g., Howard, 1994; Roering et al., 1999) function of
surface gradient. In its linear form, sediment transport

per unit contour width, qs, is given by

qs ¼ �kd
@z

@x
; ð3Þ

where kd is a diffusivity constant and x is a vector

oriented in the downslope direction. To solve this
equation in a TIN framework, the slope width between
two adjacent nodes can be approximated by the width of

their shared Voronoi cell edge, lij (Fig. 7). Combining
this with continuity of mass (Eq. (1)), the rate of
elevation change at a node due to diffusive transport is
approximated numerically by

dzi
dt

¼ � kd
Li

Xn
j¼1

lij
ðzi � zjÞ
Lij

; ð4Þ

where n is the number of nodes adjacent to node i, Lij is
the length of the triangle edge connecting nodes i and j,

Fig. 6. Example of lake formation in CHILD model. Here, we

are looking down onto TIN representation of watershed, with

outlet to right. Gray lines indicate flow paths (stream lines).

Gray asterisks denote lake nodes. Lake has formed in response

to ‘‘digital dam’’ that was created by artificially raising

elevation of nodes near the catchment outlet. Lake outlet is

indicated by thick gray line at right-hand edge.
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and lij is the width of the shared Voronoi cell edge
between nodes i and j. In the CHILD model (Tucker

et al., 1997), this system of equations is solved using a
simple forward-difference method with an adaptive

time-stepping scheme. Note that because diffusive mass
exchange takes place along triangle edges, the equation

can be solved efficiently by first computing the mass
exchange along each triangle edge (or equivalently,
across each Voronoi polygon face), then updating the

node elevations accordingly. This numerical algorithm
performs well when compared with analytical solutions
(Fig. 8).
Similarly, 2D groundwater flow can be approximated

numerically using an expression of the following
form:

dhi
dt

¼ � 1
Li

Xn
j¼1

lij 12ðTðhiÞ þ TðhjÞÞ
ðhi � hjÞ
Lij

; ð5Þ

where hi is the groundwater table elevation at node i
and TðhiÞ is transmissivity (in this example, transmis-
sivity is assumed to vary with water table height,

with the average transmissivity between nodes i
and j used to compute the flux between them).
Fig. 9 compares the equilibrium water table height

as computed from a simplified version of Eq. (5)
with an analytical solution, assuming a linear hillslope
geometry.

Fig. 8. Numerical solution to hillslope diffusion equation (Eq. (4)) under constant rate of baselevel fall on 5000-triangle TIN (inset),

compared with analytical solution. TIN represents rectangular domain with two fixed boundaries. Open circles show nodes in TIN

viewed from side. Solid line shows analytical solution in 1D. (Circles along x-axis are boundary points; y-axis is nondimensional

elevation with elevation, z, scaled by hillslope length, L, rate of baselevel fall at boundaries, U, and diffusivity constant, kd .)

Fig. 7. Illustration of mass flux across Voronoi polygon face

between two adjacent nodes. Mass flux per unit contour width

is calculated based on gradient of triangle edge connecting A

and B, and total flux is obtained by multiplying by width of

shared Voronoi polygon edge.
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6. Examples

We have applied these data structures and algorithms
in simulation models of long-term landscape evolution
(Tucker et al., 1997) and of catchment rainfall-runoff.

Fig. 10 shows a simulated drainage basin responding to
a period of rapid baselevel lowering at the outlet. Basin
evolution is driven by a sequence of randomly generated
storms, with fluvial erosion and sediment transport

modeled on the basis of surface gradient and total
discharge at each point (Tucker and Bras, 2000).
Fig. 11 illustrates a hydrologic application of the same

concepts. The figure shows simulated depth to the water
table in a small catchment in Kansas in response to
spatially uniform recharge. Water table depth at each

point is computed using Eq. (5), assuming an exponen-
tial decrease in saturated hydraulic conductivity with
depth. In both of these examples, the TIN framework is

implemented in C++, with each data element (nodes,
triangles, and directed edges) encapsulated within a
class. The hydrologic model and the landscape evolution
model (Fig. 10) share the same code for mesh handling

and drainage network delineation, which highlights the
advantages of a modular, object-oriented approach in
terms of code reusability.

The data structures and algorithms we have outlined
are also well suited to applications involving dynamic

remeshing in response to changing surface morphology.
Fig. 12 illustrates output from a model that combines
vertical erosion/deposition with lateral erosion asso-

ciated with river meandering. Such adaptive remeshing
strategies make it possible to explore a range of geologic
problems that were heretofore inaccessible to modeling,
such as horizontal tectonic deformation. Strategies for

adaptive remeshing are discussed by Braun and Sam-
bridge (1997) and Lancaster (1998).

7. Summary and conclusions

We have presented a set of data structures and
associated algorithms that facilitate TIN-based terrain

modeling, with an emphasis on geologic and hydrologic
applications. The framework is particularly well suited
to applications involving dynamic changes in surface

morphology and, more generally, to applications in
which nodes (as opposed to triangles) are used as the
basic computational elements. The data structure
provides an efficient means of storing both a Delaunay

triangulation and its corresponding Voronoi diagram.

Fig. 9. Numerical solution to simplified 2D groundwater flow equation (Eq. (5)) on straight hillslope (inset), compared with 1D

analytical solution. Symbols show nodes in TIN viewed from side. Solid line shows analytical solution in 1D.
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By using Voronoi polygons rather than triangles as the
computational elements, the problem of distinguishing
between flow within triangles and flow between triangles

is avoided. Voronoi polygons also provide a natural
basis for solving diffusion-like equations numerically,
using Voronoi polygon edges to approximation the

effective contour width between each pair of adjacent
nodes.
The object-based data structure simplifies bookkeep-

ing. Each node points to a single directed edge (or
spoke), which then points to its counterclockwise
neighbor, thus fully describing the connectivity between
nodes and triangle edges. The data structure also

contains sufficient information to provide a complete
representation of Voronoi geometry.

Based on this framework, we describe a simple flow-
routing method. The algorithm is analogous to the most
commonly used grid-based flow routing method, and

does not account for flow divergence on convex land-
scape elements (but could easily be generalized to do so).
We also present a new algorithm for identifying closed

depressions within a drainage basin, and resolving
drainage for those depressions without altering the
topography.

The dual edge data structure is object-oriented in the
sense that data associated with each of the three mesh
elements (nodes, triangles, and directed edges) are
grouped together within three data classes. While in

principle this data structure could be represented using
traditional procedural programming (for example, as a

Fig. 10. Example landscape evolution simulation using CHILD model. Here, gully erosion into nearly flat plateau has been stimulated

by sharp drop in elevation at outlet point.
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Fig. 11. Contour plot showing simulated depth to water table under constant recharge, Forsyth Creek catchment, Fort Riley, Kansas,

using TRIBS model. Darker colors correspond to shallower water table. Inset shows catchment topography represented by TIN mesh.

Fig. 12. Simulation of 3D floodplain development by lateral stream migration (meandering). Adaptive meshing strategy is used to

dynamically move, add, and delete points in response to lateral movement along main channel. (A) Contour map of simulation. (B)

Triangulation, showing densification of mesh in response to stream migration. Straight channel segments are artifacts of low mesh

resolution outside of meander belt.
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series of arrays), an object-oriented implementation
offers several advantages. By grouping together data

and functionality for each terrain element, it becomes
possible to isolate the mesh implementation from the
calculations that are performed on the mesh. This type

of strategy enhances modularity and portability, and has
the potential to reduce software development time.
Furthermore, the inheritance capabilities of object-
oriented programming languages such as C++ make

it possible for different applications to inherit basic TIN
functionality while adding application-specific capabil-
ities as needed.
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Appendix A. Pseudo-code for Lake Fill algorithm

The Lake Fill algorithm uses a flag to indicate
whether a node is a normal self-draining node (Un-

flooded), a pit for which an outlet has yet to be resolved
(Pit), a flooded node that is part of the ‘‘lake’’ currently
being computed (CurrentLake), or a flooded node that is

part of a lake identified on a previous iteration
(Flooded). The algorithm assumes that initially all
nodes have already been flagged as either Unflooded

or Pit by the drainage direction finding routine.

FOR each node pitNode flagged as a pit DO

Place pitNode on ‘‘lake list’’ (list of flooded nodes) as 1st item

foundOutlet:=FALSE

DO

// Start by finding the lowest node on the perimeter of the lake

lowestNode:=first node on lake list

lowestElev:=arbitrarily large number

FOR each node curnode on lake list DO

FOR each neighboring node nbr DO

IF nbr not flooded & not a closed boundary THEN

IF nbr lower than lowestElev THEN

lowestNode:=nbr

lowestElev:=nbr’s elevation
ENDIF

ELSE IF nbr is flagged as a Pit or a Flooded node THEN

Add nbr to lake list and flag it as CurrentLake

ENDIF

ENDFOR

ENDFOR

// Check to see whether the lowest node is a valid outlet

IF lowestNode is an open boundary THEN foundOutlet:=TRUE

ELSE

IF lowestNode has a neighbor that is (a) lower than itself, (b) Is not flagged as CurrentLake, (c) is not a

closed boundary, and (d) is not part of a previous lake that has an outlet higher than lowestNode, THEN

lowestNode is the outlet } set its drainage path accordingly

foundOutlet:=TRUE

ELSE

Add lowestNode to the lake list and flag it as CurrentLake

ENDIF

ENDIF

WHILE NOT foundOutlet

// Resolve drainage directions for lake nodes by (a) finding the shortest

// path to the outlet for each or (b) pointing each directly toward the outlet.

// A lake ID number can also be assigned to each node for further handling

// (e.g., application of a lake-routing hydrologic model)

ENDFOR
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