Transients Before Death:
Powering Luminous Events with Explosions Running Into CSM

Nathan Smith
University of Arizona

Main collaborators: J. Mauerhan, A. Filippenko, J. Silverman
Power sources for Supernovae

#1 Radioactive decay
$^{56}\text{Ni} - ^{56}\text{Co} - ^{56}\text{Fe}$ (0.1-1 M_\odot)
small R : WD, WR, BSG

#2 Shock-deposited
(thermal energy)
need big initial R

Typically:
$E_{\text{rad}}/E_{\text{KE}} \sim 1\%$

$E_{\text{rad}}/E_{\text{tot}} \sim R_*/R_{\text{ph}}$

#3 Circumstellar medium (CSM) Interaction
(shock KE into light - Type II In supernovae)
$E_{\text{rad}}/E_{\text{KE}} \sim 30-50\%$
Efficient conversion of KE \rightarrow Light

\[L = \frac{1}{2} w V_{SN}^3 = \frac{1}{2} \dot{M} \frac{V_{SN}^3}{V_w} \]

We can observe V_{SN}, V_w, and L, and thus constrain CSM mass.

SNe IIn require several M_\odot of CSM ejected a few to 1000 yr before core collapse.
Can power extremely luminous supernovae with normal (10^{51} erg) core-collapse explosions.

Results in a slow, thin, dense shell, narrow-lined spectra.

LESSON TO BE LEARNED:

Can also power normal-luminosity SN with lower explosion energy (i.e. 10^{50} ergs).

Even weaker explosions of 10^{47}-10^{49} ergs can potentially make intermediate-luminosity transients from a wide variety of weak/failed explosions/eruptions.

All you need is dense CSM and a little energy…
Type II-P subclass:
(Mauerhan et al. 2013)

Type II spectra (nearly identical) with plateau light curves

SN 1994W
SN 2009kn
SN 2011ht

1. Sharp drop in L at 120 days
2. Low inferred ^{56}Ni mass (0.007-0.02 M_\odot)
The Crab Nebula and the class of Type IIIn-P supernovae caused by sub-energetic electron capture explosions

Me
Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721, USA

arXiv:1304.0689
FILAMENTS:

$M_{\text{tot}} \approx 5 M_{\odot}$

$V \approx 1200 \text{ km/s}$

$KE \approx 7 \times 10^{49} \text{ erg}$

Abundances:
He-rich, O-poor, low Fe-group

Smith (2003)
FILAMENTS:

- $M_{\text{tot}} \approx 5 M_{\odot}$
- $V \approx 1200 \text{ km/s}$
- $KE \approx 7 \times 10^{49} \text{ erg}$

Abundances:
- He-rich, O-poor
- low Fe-group

Chinese astrologers (SN 1054):
1. Visible in daytime for 23 days
2. Visible at night for 623 days
Progenitor: 10-15 M_\odot
RSG

Hester (2008) ARAA

Extended Fast SN Envelope

Crab Nebula Filaments:
Boundary between outer edge of PWN nebula and inner edge of fast SN ejecta

$M_{\text{tot}} \approx 5-7 M_\odot$
5000-10000 km/s
KE $\approx 10^{51}$ erg

Extended Fast SN Envelope

Fe core collapse

1051 erg

normal Type II-P

“Standard View”
Progenitor: 10-15 M$_\odot$ RSG

Hester (2008) ARAA

Crab Nebula Filaments: Boundary between outer edge of PWN nebula and inner edge of fast SN ejecta

Extended Fast SN Envelope

M$_{\text{tot}}$ \approx 5-7 M$_\odot$
KE \approx 1051 erg

5000-10000 km/s
Alternative:
Electron-capture Supernova

10^{50} erg

Progenitor:
8-10 M_{\odot}
Super-AGB

Nomoto et al. (1982,84,87)

degenerate ONeMg Core

$M_{\text{tot}} \approx 3-6 M_{\odot}$
1200-2500 km/s
KE $\approx 10^{50}$ erg

ecSN:
Low-energy explosion
High He + C, low O abundances
Very low ^{56}Ni yield and low Fe-group abundances

But...

Resulting SN should be faint.

How would we get such a high luminosity from low explosion energy?
Type IIIn-P subclass:

Can be done with 10^{50} erg explosion.

Wind density $\sim R^{-2}$

$E_{\text{exp}} = 1.2 \times 10^{50}$ erg
$E_{\text{CDS}} = 7 \times 10^{49}$ erg
$E_{\text{red}} = 5 \times 10^{49}$ erg

Smith (2013)
Type II-P subclass:

Can be done with 10^{50} erg explosion.
a) SN progenitor

8-10 Msun super-AGB

equatorial density enhancement

b) SN 1054 - visible in daylight

swept up CDS ~10^6 Lsun from CSM Inter.

c) SN 1054 - reaching end of plateau

pinched waist becomes eq. torus

d) SNR: Aftermath of PWN

CSM: ~2 Msun ~ 10^{15} cm

PWN sweeps into CDS for 1000 yr, R-T Instab.
b) SN 1054 - visible in daylight

swept up CDS
$\sim 10^9$ Lsun from CSM inter.

equatorial density enhancement

c) SN 1054 - reaching end of plateau

pinched waist becomes eq. torus

d) SNR: Aftermath of PWN

crab's thin shell is remnant of CDS

PWN sweeps into CDS for 1000 yr, R-T instab.
c) SN 1054 - reaching end of plateau

- Swept up CDS
- Pinched waist becomes eq. torus
d) SNR: Aftermath of PWN

- Remnant of CDS
- E/W Dark Bays
- "He-rich eq. torus"
- Filaments from heads of R-T
- Crab shell is remnant of CDS
- PWN sweeps into CDS for 1000 yr, R-T instab.
THE CRAB NEBULA:

- **SN 1054 was a Type IIin-P supernova**
 (clear prediction for spectrum of light echoes if we find them)

- **Reconciles low explosion KE (ecSN, \(10^{50}\) ergs) with high luminosity. (ecSN is favored anyway because of abundances.)

- **Evolution of thin swept-up shell in a Type IIin accounts for slow shell of fragmented filaments seen today (especially after 1000 yr of PWN)**

- **Lack of blast wave and outer envelope.**
Power the 10-year Great Eruption luminosity with a 10^{50} erg explosion and CSM interaction, as in a Type IIn supernova...
SN 2009ip

- First discovered in Aug 2009 (Maza et al. CBET 1928)
- Re-brightened in July 2010 (Drake et al. 2010, Atel 2897)
- Re-brightened in July 2012 (Drake et al. 2012, Atel 4334)
- Detailed spectra and photometry of 2009 outburst (Smith et al. 2010)
- HST detection of LBV-like progenitor (50-80 M_\odot) (Foley et al. 2011)

its 2012 demise

SN 2009ip

- First discovered in Aug 2009 (Maza et al. CBET 1928)
- Re-brightened in July 2010 (Drake et al. 2010, Atel 2897)
- Re-brightened in July 2012 (Drake et al. 2012, Atel 4334)

Smith et al. 2013

Graphs showing the light curve of SN 2009ip with data points for different epochs and a comparison with other supernovae.

Hα

- Bok 2012 Sept 27 (3rd outburst)
- Keck/DEIMOS 2012 Sept 23 (3rd outburst)
- Bok 2012 Sept 17 (3rd outburst)
- Keck/LRCS 2010 Nov 5 (2nd outburst)
- Keck/LRCS 2009 Sept 22 (1st outburst)

SN 2009ip

• First discovered in Aug 2009 (Maza et al. CBET 1928)
• Re-brightened in July 2010 (Drake et al. 2010, Atel 2897)
• Re-brightened in July 2012 (Drake et al. 2012, Atel 4334)

Smith et al. 2013

SN 2009ip

First discovered in Aug 2009 (Maza et al. CBET 1928)

Re-brightened in July 2010 (Drake et al. 2010, Atel 2897)

Re-brightened in July 2012 (Drake et al. 2012, Atel 4334)

Smith et al. 2013
IR excess from hot dust – from pre-SN outbursts
(Smith et al 2013, arXiv:1303.0304)
Pastorello et al. (2013) propose that the 2012 event of SN 2009ip was actually a pulsational pair instability ejection event, not a true core collapse SN. Star survived, etc.
Hard to prove definitively… so was SN2009ip really a supernova? It clearly wasn’t a normal supernova, so what constitutes proof?

1. Philosophical comment

2. Kinetic energy $\sim v^2$

$$\frac{1}{2}(M_\odot)(10^4 \text{ km/s})^2 = \text{FOE}$$

3. How many pulsational pair instability events can there be?

SN2006gy 2003ma 1961V
SN2006tf SN2006jc
Quimbies 1994W

And now 2009ip, and 2010mc….

What about all the other Type IIn “supernovae”?
Hard to prove definitively… so was SN2009ip really a supernova? It clearly wasn’t a normal supernova, so what constitutes proof?

1. Philosophical comment

2. Kinetic energy $\sim v^2$

$$\frac{1}{2}(M_\odot)(10^4 \text{ km/s})^2 = \text{FOE}$$

3. How many pulsational pair instability events can there be?

SN2006gy 2003ma 1961V
SN2006tf SN2006jc
Quimbies 1994W

And now 2009ip, and 2010mc….

What about all the other Type IIn “supernovae”?
PRECURSOR ERUPTIONS:

SN 2009ip – clear detection of LBV eruptions before SN, plus progenitor star and spectra.

Another case – SN 2010mc (appears to be same as SN2009ip, less pre-SN data; see Ofek et al. 2013)

Another case – SN 2006jc: Outburst detected 2 yr before SN (Type Ibn) at same position (no spectra, and no progenitor star). Pastorello et al. (2007)

DENSE CIRCUMSTELLAR GAS:

Type IIn supernovae require eruptive pre-SN mass loss in few years before core collapse.

Huge range of ejected masses (0.1-20 M_\odot) and energy (0.001-0.2 FOE).
PRECURSOR ERUPTIONS:

SN 2009ip – clear detection of LBV eruptions before SN, plus progenitor star and spectra.

Another case – SN 2010mc (appears to be same as SN2009ip, less pre-SN data; see Ofek et al. 2013)

Another case – SN 2006jc: Outburst detected 2 yr before SN (Type Ibn) at same position (no spectra, and no progenitor star). Pastorello et al. (2007)

DENSE CIRCUMSTELLAR GAS:

Type IIIn supernovae require eruptive pre-SN mass loss in few years before core collapse.

Huge range of ejected masses (0.1-20 M_\odot) and energy (0.001-0.2 FOE).
Most significant take-home point:

✧ CSM in Type II In supernovae and direct detections of precursor events require that some massive stars explode before they explode. Huge range of mass and energy.

WHY?

Eruptions a few years (or 1000 yr) before core collapse would suggest nuclear burning instabilities during C, Ne, O, or Si burning.

Check out papers by Meakin & Arnett

✧ Why don’t they all do it?

✧ How does pre-SN event influence structure of the core? Does that influence core collapse?