MTH 306 Spring Term 2007
Lesson 2

John Lee

Oregon State University
Goals:

- Learn the algebraic and geometric descriptions of vectors
Goals:

- Learn the algebraic and geometric descriptions of vectors
- Learn the basic rules of vector algebra and their geometric interpretations
Vectors, Lines, and Planes

Goals:

- Learn the algebraic and geometric descriptions of vectors
- Learn the basic rules of vector algebra and their geometric interpretations
- Learn the basic algebraic properties of dot products and use them to find angles between vectors and to test for orthogonality
Vectors, Lines, and Planes

Goals:

- Learn the algebraic and geometric descriptions of vectors
- Learn the basic rules of vector algebra and their geometric interpretations
- Learn the basic algebraic properties of dot products and use them to find angles between vectors and to test for orthogonality
- Be able to find the component and projection of one vector along another vector
Goals:

- Learn the algebraic and geometric descriptions of vectors
- Learn the basic rules of vector algebra and their geometric interpretations
- Learn the basic algebraic properties of dot products and use them to find angles between vectors and to test for orthogonality
- Be able to find the component and projection of one vector along another vector
- Learn the vector and scalar equations for lines and planes in 2-space and 3-space
Vectors in Euclidean 2-space and 3-space

- Vectors have both algebraic and geometric descriptions.
Vectors in Euclidean 2-space and 3-space

- Vectors have both algebraic and geometric descriptions.
- The algebraic description enables you to calculate easily.

By contrast, a number, also called a scalar, has only magnitude. It has no direction.

Force and velocity are vectors. Mass, speed, and temperature are scalars.
Vectors in Euclidean 2-space and 3-space

- Vectors have both algebraic and geometric descriptions.
- The algebraic description enables you to calculate easily.
- The geometric description helps with conceptual understanding and with applications, such as to problems involving motion or force.
Vectors have both algebraic and geometric descriptions.

The algebraic description enables you to calculate easily.

The geometric description helps with conceptual understanding and with applications, such as to problems involving motion or force.

From the algebraic point of view, a vector is a list of components that are added, subtracted, and multiplied by scalars (numbers) component-by-component.
Vectors in Euclidean 2-space and 3-space

- Vectors have both algebraic and geometric descriptions.
- The algebraic description enables you to calculate easily.
- The geometric description helps with conceptual understanding and with applications, such as to problems involving motion or force.
- From the algebraic point of view, a vector is a list of components that are added, subtracted, and multiplied by scalars (numbers) component-by-component.
- From the geometric point of view, a vector has a magnitude (or size) and direction. It is represented by an arrow.
Vectors have both algebraic and geometric descriptions.

The algebraic description enables you to calculate easily.

The geometric description helps with conceptual understanding and with applications, such as to problems involving motion or force.

From the algebraic point of view, a vector is a list of components that are added, subtracted, and multiplied by scalars (numbers) component-by-component.

From the geometric point of view, a vector has a magnitude (or size) and direction. It is represented by an arrow.

By contrast, a number, also called a **scalar**, has only magnitude. It has no direction.
Vectors in Euclidean 2-space and 3-space

- Vectors have both algebraic and geometric descriptions.
- The algebraic description enables you to calculate easily.
- The geometric description helps with conceptual understanding and with applications, such as to problems involving motion or force.
- From the algebraic point of view, a vector is a list of components that are added, subtracted, and multiplied by scalars (numbers) component-by-component.
- From the geometric point of view, a vector has a magnitude (or size) and direction. It is represented by an arrow.
- By contrast, a number, also called a scalar, has only magnitude. It has no direction.
- Force and velocity are vectors.
Vectors have both algebraic and geometric descriptions.

The algebraic description enables you to calculate easily.

The geometric description helps with conceptual understanding and with applications, such as to problems involving motion or force.

From the algebraic point of view, a vector is a list of components that are added, subtracted, and multiplied by scalars (numbers) component-by-component.

From the geometric point of view, a vector has a magnitude (or size) and direction. It is represented by an arrow.

By contrast, a number, also called a **scalar**, has only magnitude. It has no direction.

Force and velocity are vectors.

Mass, speed, and temperature are scalars.
The Component Presentation of Vectors

\[
\mathbf{a} = \langle a_1, a_2 \rangle \quad \text{in 2-dimensions},
\]
\[
\mathbf{a} = \langle a_1, a_2, a_3 \rangle \quad \text{in 3-dimensions}.
\]

The **magnitude (length)** of a vector \(\mathbf{a} \) is

\[
|\mathbf{a}| = \sqrt{a_1^2 + a_2^2} \quad \text{in 2-dimensions},
\]
\[
|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2} \quad \text{in 3-dimensions}.
\]

Vectors are added, subtract, and multiplied by scalars componentwise. In 3-dimensions, if

\[
\mathbf{a} = \langle a_1, a_2, a_3 \rangle \quad \text{and} \quad \mathbf{b} = \langle b_1, b_2, b_3 \rangle,
\]

and \(c \) is a scalar, then

\[
\mathbf{a} \pm \mathbf{b} = \langle a_1 \pm b_1, a_2 \pm b_2, a_3 \pm b_3 \rangle
\]
\[
ca = \langle ca_1, ca_2, ca_3 \rangle.
\]
Vector Arithmetic

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1.</td>
<td>(a + b = b + a)</td>
</tr>
<tr>
<td>A2.</td>
<td>(a + (b + c) = (a + b) + c)</td>
</tr>
<tr>
<td>A3.</td>
<td>(a + 0 = a)</td>
</tr>
<tr>
<td>A4.</td>
<td>(a + (-a) = 0)</td>
</tr>
<tr>
<td>A5.</td>
<td>(c(a + b) = ca + cb)</td>
</tr>
<tr>
<td>A6.</td>
<td>((c + d)a = ca + da)</td>
</tr>
<tr>
<td>A7.</td>
<td>((cd)a = c(da))</td>
</tr>
<tr>
<td>A8.</td>
<td>(1a = a)</td>
</tr>
</tbody>
</table>

Why are these rules true?
Vector addition and subtraction can be visualized geometrically through a triangle law and a parallelogram law.
Geometric Presentation of Vectors

- Vector addition and subtraction can be visualized geometrically through a **triangle law** and a **parallelogram law**.
- Scalar multiplication scales the length of a vector and changes its direction when the scalar is **negative**.
A unit vector is a vector that has length one.
A unit vector is a vector that has length one.

If \(\mathbf{a} \neq 0 \), then \(\mathbf{u} = \mathbf{a} / |\mathbf{a}| \) is a unit vector with the same direction as \(\mathbf{a} \).
A unit vector is a vector that has length one.

If \(\mathbf{a} \neq 0 \), then \(\mathbf{u} = \mathbf{a} / |\mathbf{a}| \) is a unit vector with the same direction as \(\mathbf{a} \).

In 3-dimensions, the unit vectors

\[
\mathbf{i} = \langle 1, 0, 0 \rangle, \quad \mathbf{j} = \langle 0, 1, 0 \rangle, \quad \mathbf{k} = \langle 0, 0, 1 \rangle
\]

provide a convenient alternative to the angle-bracket notation for components

\[
\mathbf{a} = \langle a_1, a_2, a_3 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}
\]
A unit vector is a vector that has length one.

If \(a \neq 0 \), then \(u = a / |a| \) is a unit vector with the same direction as \(a \).

In 3-dimensions, the unit vectors

\[
\mathbf{i} = \langle 1, 0, 0 \rangle, \quad \mathbf{j} = \langle 0, 1, 0 \rangle, \quad \mathbf{k} = \langle 0, 0, 1 \rangle
\]

provide a convenient alternative to the angle-bracket notation for components

\[
a = \langle a_1, a_2, a_3 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}
\]

The vectors \(\mathbf{i}, \mathbf{j}, \) and \(\mathbf{k} \) are called the standard basis vectors for 3-space.
An n-dimensional vector \mathbf{a} has n components

$$\mathbf{a} = \langle a_1, a_2, a_3, \ldots, a_n \rangle$$
An *n*-dimensional vector \mathbf{a} has n components

$$\mathbf{a} = \langle a_1, a_2, a_3, ..., a_n \rangle$$

Such vectors are added, subtracted, and multiplied by scalars componentwise.
N-dimensional Vectors

- An n-dimensional vector \mathbf{a} has n components

$$\mathbf{a} = \langle a_1, a_2, a_3, \ldots, a_n \rangle$$

- Such vectors are added, subtracted, and multiplied by scalars componentwise.

- Consequently, the algebraic properties A1-A8 hold for vectors in n-dimensions.
An n-dimensional vector \mathbf{a} has n components

$$\mathbf{a} = \langle a_1, a_2, a_3, \ldots, a_n \rangle$$

Such vectors are added, subtracted, and multiplied by scalars componentwise.

Consequently, the algebraic properties A1-A8 hold for vectors in n-dimensions.

The components of a vector can be either real or complex numbers.
An n-dimensional vector \mathbf{a} has n components

$$\mathbf{a} = \langle a_1, a_2, a_3, \ldots, a_n \rangle$$

Such vectors are added, subtracted, and multiplied by scalars componentwise.

Consequently, the algebraic properties A1-A8 hold for vectors in n-dimensions.

The components of a vector can be either real or complex numbers.

The magnitude or length of \mathbf{a} is

$$|\mathbf{a}| = \sqrt{|a_1|^2 + |a_2|^2 + \cdots + |a_n|^2}.$$
Vocabulary

- \(\mathbb{R}^n \) is the space of all \(n \)-vectors with real components and in which the scalars are real numbers
Vocabulary

- \mathbb{R}^n is the space of all n-vectors with real components and in which the scalars are real numbers
- \mathbb{C}^n is the space of all n-vectors with complex components and in which the scalars are complex numbers
- \mathbb{R}^n is the space of all n-vectors with real components and in which the scalars are real numbers
- \mathbb{C}^n is the space of all n-vectors with complex components and in which the scalars are complex numbers
- The **standard basis in n-space** consists of the unit vectors
 - $\mathbf{e}_1 = \langle 1, 0, 0, \ldots, 0, 0 \rangle$
 - $\mathbf{e}_2 = \langle 0, 1, 0, \ldots, 0, 0 \rangle$
 - $\mathbf{e}_3 = \langle 0, 0, 1, \ldots, 0, 0 \rangle$
 - \vdots
 - $\mathbf{e}_n = \langle 0, 0, 0, \ldots, 0, 1 \rangle$
Vocabulary

- \(\mathbb{R}^n \) is the space of all \(n \)-vectors with real components and in which the scalars are real numbers.
- \(\mathbb{C}^n \) is the space of all \(n \)-vectors with complex components and in which the scalars are complex numbers.
- The **standard basis in \(n \)-space** consists of the unit vectors

 \[
 \mathbf{e}_1 = \langle 1, 0, 0, \ldots, 0, 0 \rangle , \\
 \mathbf{e}_2 = \langle 0, 1, 0, \ldots, 0, 0 \rangle , \\
 \mathbf{e}_3 = \langle 0, 0, 1, \ldots, 0, 0 \rangle , \\
 \vdots \\
 \mathbf{e}_n = \langle 0, 0, 0, \ldots, 0, 1 \rangle .
 \]

- Each vector \(\mathbf{a} \) in \(n \)-space can be represented as

 \[
 \mathbf{a} = \langle a_1, a_2, a_3, \ldots, a_n \rangle = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + a_3 \mathbf{e}_3 + \cdots + a_n \mathbf{e}_n .
 \]
For vectors in 2-space and 3-space the **dot product** of \(\mathbf{a} \) and \(\mathbf{b} \) is

\[
\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \, |\mathbf{b}| \cos \theta
\]

where \(\theta \) is the smaller angle formed by \(\mathbf{a} \) and \(\mathbf{b} \), so that \(0 \leq \theta \leq \pi \).

The **component of \(\mathbf{b} \) along \(\mathbf{a} \)** is

\[
\text{comp}_\mathbf{a} \mathbf{b} = |\mathbf{b}| \cos \theta = \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|}
\]

What are the geometric interpretations?
For vectors in 2-space and 3-space the **dot product** of \(\mathbf{a} \) and \(\mathbf{b} \) is

\[
\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \, |\mathbf{b}| \cos \theta
\]

where \(\theta \) is the smaller angle formed by \(\mathbf{a} \) and \(\mathbf{b} \), so that \(0 \leq \theta \leq \pi \).

- **The component of \(\mathbf{b} \) along \(\mathbf{a} \)** is

\[
\text{comp}_a \mathbf{b} = |\mathbf{b}| \cos \theta = \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|}
\]

- **The projection of \(\mathbf{b} \) along \(\mathbf{a} \)** is

\[
\text{proj}_a \mathbf{b} = (\text{comp}_a \mathbf{b}) \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|^2} \mathbf{a}.
\]

What are the geometric interpretations?
Finding the Angle Between Vectors

It is easy to find the angle θ between two nonzero vectors using $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$:

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \quad \text{with} \quad 0 \leq \theta \leq \pi$$

Important:

$$\mathbf{a} \perp \mathbf{b} \iff \mathbf{a} \cdot \mathbf{b} = 0$$
Dot Product – Algebraic View

In terms of components

\[\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 \]
\[\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 \]

in 2-dimensions,
in 3-dimensions.

Notice that

\[\mathbf{a} \cdot \mathbf{a} = a_1^2 + a_2^2 + a_3^2 = |\mathbf{a}|^2 \]

and likewise in 2 dimensions. The dot product is called a “product” because it satisfies:

| DP1. \(\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} \) | DP2. \(\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} \) |
| DP3. \(\mathbf{0} \cdot \mathbf{a} = 0 \) | DP4. \(\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \) |
| DP5. \(d (\mathbf{a} \cdot \mathbf{b}) = (d\mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (d\mathbf{b}) \) |
Dot Product in Real N-space

The **dot product** (also called **scalar product** or **inner product**) of

\[\mathbf{a} = \langle a_1, a_2, a_3, \ldots, a_n \rangle \] and \[\mathbf{b} = \langle b_1, b_2, b_3, \ldots, b_n \rangle \]

in \(\mathbb{R}^n \) is

\[\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n. \]

- Properties DP1-DP5 hold
Dot Product in Real N-space

The **dot product** (also called **scalar product** or **inner product**) of

\[\mathbf{a} = \langle a_1, a_2, a_3, \ldots, a_n \rangle \text{ and } \mathbf{b} = \langle b_1, b_2, b_3, \ldots, b_n \rangle \]

in \(\mathbb{R}^n \) is

\[\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n. \]

- Properties DP1-DP5 hold
- **(Schwarz Inequality)** For any two \(n \)-vectors \(\mathbf{a} \) and \(\mathbf{b} \) in \(n \)-space,

\[|\mathbf{a} \cdot \mathbf{b}| \leq |\mathbf{a}| \cdot |\mathbf{b}| \]
The **dot product** (also called **scalar product** or **inner product**) of

\[\mathbf{a} = \langle a_1, a_2, a_3, \ldots, a_n \rangle \quad \text{and} \quad \mathbf{b} = \langle b_1, b_2, b_3, \ldots, b_n \rangle \]

in \(\mathbb{R}^n \) is

\[\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n. \]

- Properties DP1-DP5 hold
- **(Schwarz Inequality)** For any two \(n \)-vectors \(\mathbf{a} \) and \(\mathbf{b} \) in \(n \)-space,

\[|\mathbf{a} \cdot \mathbf{b}| \leq |\mathbf{a}| |\mathbf{b}| \]

- The Schwarz inequality enables us to extend the notion of angle, component, and projection to \(n \)-space - read on!
There is a unique angle \(\theta \) with \(0 \leq \theta \leq \pi \) such that

\[
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}
\]

By definition \(\theta \) is the angle between \(\mathbf{a} \) and \(\mathbf{b} \).
There is a unique angle θ with $0 \leq \theta \leq \pi$ such that
\[
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}
\]
By definition θ is the \textbf{angle between a and b}.

Thus
\[
\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta
\]
just as for vectors in 2- and 3-space.
There is a unique angle θ with $0 \leq \theta \leq \pi$ such that

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

By definition θ is the angle between \mathbf{a} and \mathbf{b}.

Thus

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

just as for vectors in 2- and 3-space.

We say two n-vectors \mathbf{a} and \mathbf{b} are **orthogonal** (perpendicular) if their dot product is zero:

$$\mathbf{a} \perp \mathbf{b} \iff \mathbf{a} \cdot \mathbf{b} = 0.$$
There is a unique angle θ with $0 \leq \theta \leq \pi$ such that

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \, ||\mathbf{b}||}$$

By definition θ is the **angle between \mathbf{a} and \mathbf{b}**.

Thus

$$\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \, ||\mathbf{b}|| \cos \theta$$

just as for vectors in 2- and 3-space.

We say two n-vectors \mathbf{a} and \mathbf{b} are **orthogonal (perpendicular)** if their dot product is zero:

$$\mathbf{a} \perp \mathbf{b} \iff \mathbf{a} \cdot \mathbf{b} = 0.$$

The component and projection of one vector along another are defined just as in 2- or 3-space

$$\text{comp}_\mathbf{a} \mathbf{b} = \frac{\mathbf{b} \cdot \mathbf{a}}{||\mathbf{a}||},$$

$$\text{proj}_\mathbf{a} \mathbf{b} = \frac{\mathbf{b} \cdot \mathbf{a}}{||\mathbf{a}||^2} \mathbf{a}.$$
Example

Use dot product calculations to verify the identity

\[|a + b|^2 + |a - b|^2 = 2|a|^2 + 2|b|^2. \]

Then give a geometric interpretation of this result for vectors in \(\mathbb{R}^2 \).
Row and Column Vectors

Sometimes it is most useful to think of a vector as a “row” vector and sometimes as a “column” vector.

- **Row vectors** are expressed by

 \[\mathbf{a} = \langle a_1, a_2, a_3, \ldots, a_n \rangle \quad \text{or} \quad \mathbf{a} = [a_1 \ a_2 \ a_3 \ \ldots \ a_n] \]

 using angle or square brackets.
Row and Column Vectors

Sometimes it is most useful to think of a vector as a “row” vector and sometimes as a “column” vector.

- **Row vectors** are expressed by

 \[\mathbf{a} = \langle a_1, a_2, a_3, \ldots, a_n \rangle \quad \text{or} \quad \mathbf{a} = [a_1 \ a_2 \ a_3 \ \ldots \ a_n] \]

 using angle or square brackets.

- **Column vectors** are expressed by

 \[\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_n \end{bmatrix}. \]
A Line L is determined by a point P_0 on it and a vector \mathbf{v} parallel to it.
A Line L is determined by a point P_0 on it and a vector \mathbf{v} parallel to it. The triangle law of vector addition gives a vector equation for L:

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}, \quad \text{for } -\infty < t < \infty.$$
Lines in Space

- A Line L is determined by a point P_0 on it and a vector \mathbf{v} parallel to it.
- The triangle law of vector addition gives a vector equation for L:
 \[\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}, \quad \text{for } -\infty < t < \infty. \]
- If $P = (x, y, z)$, $P_0 = (x_0, y_0, z_0)$, and $\mathbf{v} = \langle a, b, c \rangle$, equating corresponding components in the vector equation gives (scalar) parametric equations for L:
 \[
 \begin{cases}
 x = x_0 + at \\
 y = y_0 + bt \\
 z = z_0 + ct
 \end{cases}
 \text{ for } -\infty < t < \infty.
 \]
A Line L is determined by a point P_0 on it and a vector \mathbf{v} parallel to it. The triangle law of vector addition gives a vector equation for L:

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}, \quad \text{for } -\infty < t < \infty.$$

If $P = (x, y, z)$, $P_0 = (x_0, y_0, z_0)$, and $\mathbf{v} = \langle a, b, c \rangle$, equating corresponding components in the vector equation gives (scalar) parametric equations for L:

$$\begin{align*}
x &= x_0 + at \\
y &= y_0 + bt \\
z &= z_0 + ct
\end{align*}$$

for $-\infty < t < \infty$.

The coefficients of t give the components of a vector parallel to the line L.

(Oregon State University)
A Line L is determined by a point P_0 on it and a vector \mathbf{v} parallel to it. The triangle law of vector addition gives a **vector equation for L**:

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}, \quad \text{for } -\infty < t < \infty.$$

If $P = (x, y, z)$, $P_0 = (x_0, y_0, z_0)$, and $\mathbf{v} = \langle a, b, c \rangle$, equating corresponding components in the vector equation gives (**scalar**) **parametric equations** for L:

$$\begin{cases}
x = x_0 + at \\
y = y_0 + bt \\
z = z_0 + ct
\end{cases} \quad \text{for } -\infty < t < \infty.$$

The coefficients of t give the components of a vector parallel to the line L. The vector equation is true in n-space. What about the scalar equation?
Example

Find scalar parametric equations for the line determined by the two points $(-3, -1, 2)$ and $(4, 3, -2)$.
A plane Π in space is determined by a point P_0 on it and a vector \mathbf{N} perpendicular (normal) to it.
A plane \(\Pi \) in space is determined by a point \(P_0 \) on it and a vector \(\mathbf{N} \) perpendicular (normal) to it.

An equation for \(\Pi \) is

\[
\mathbf{N} \cdot (\mathbf{r} - \mathbf{r}_0) = 0.
\]
A plane Π in space is determined by a point P_0 on it and a vector N perpendicular (normal) to it.

An equation for Π is

$$N \cdot (r - r_0) = 0.$$

If $P = (x, y, z)$, $P_0 = (x_0, y_0, z_0)$, and $N = \langle a, b, c \rangle$, evaluating the dot gives

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

as an equation for the plane Π.

This equation may also be put in the form $ax + by + cz = d$ by combining the constant terms.
Planes in Space

- A plane Π in space is determined by a point P_0 on it and a vector \mathbf{N} perpendicular (normal) to it.
- An equation for Π is
 $$\mathbf{N} \cdot (\mathbf{r} - \mathbf{r}_0) = 0.$$
- If $P = (x, y, z)$, $P_0 = (x_0, y_0, z_0)$, and $\mathbf{N} = \langle a, b, c \rangle$, evaluating the dot gives
 $$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$ as an equation for the plane Π.
- This equation may also be put in the form
 $$ax + by + cz = d$$ by combining the constant terms.
Planes in Space

- A plane Π in space is determined by a point P_0 on it and a vector \mathbf{N} perpendicular (normal) to it.
- An equation for Π is
 \[\mathbf{N} \cdot (\mathbf{r} - \mathbf{r}_0) = 0. \]
- If $P = (x, y, z)$, $P_0 = (x_0, y_0, z_0)$, and $\mathbf{N} = \langle a, b, c \rangle$, evaluating the dot gives
 \[a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \]
 as an equation for the plane Π.
- This equation may also be put in the form
 \[ax + by + cz = d \]
 by combining the constant terms.
- Reverse the steps to see that either of these equations has graph a plane with normal $\mathbf{N} = \langle a, b, c \rangle$.

(Oregon State University)
Planes in Space

- A plane Π in space is determined by a point P_0 on it and a vector \mathbf{N} perpendicular (normal) to it.
- An equation for Π is
 \[\mathbf{N} \cdot (\mathbf{r} - \mathbf{r}_0) = 0. \]
- If $P = (x, y, z)$, $P_0 = (x_0, y_0, z_0)$, and $\mathbf{N} = \langle a, b, c \rangle$, evaluating the dot gives
 \[a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \]
as an equation for the plane Π.
- This equation may also be put in the form
 \[ax + by + cz = d \]
 by combining the constant terms.
- Reverse the steps to see that either of these equations has graph a plane with normal $\mathbf{N} = \langle a, b, c \rangle$.
- In the case of the first equation, the plane passes through the point (x_0, y_0, z_0).
Example

A plane in space contains the point \((5, 4, 1)\) and has normal direction parallel to the line through the points \((0, -2, 0)\) and \((11, 7, -5)\). Find an equation for the plane.