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This article describes a method for simulating n-dimensional multivariate non-normal data,
with emphasis on count-valued data. Dependence is characterised by either Pearson corre-
lation or Spearman correlation. The simulation is accomplished by simulating a vector of
correlated standard normal variates. The elements of this vector are then transformed to
achieve target marginal distributions. We prove that the method corresponds to simulating
data from a multivariate Gaussian copula. The simulation method does not restrict pairwise
dependence beyond the limits imposed by the marginal distributions and can achieve any
Pearson or Spearman correlation within those limits. Two examples are included. In the first
example, marginal means, variances, Pearson correlations, and Spearman correlations are es-
timated from the epileptic seizure data set of Diggle, Liang, and Zeger [P. Diggle, P. Heagerty,
K.Y. Liang, and S. Zeger Analysis of Longitudinal Data Oxford University Press, 2002]. Data
with these means and variances are simulated, first to achieve the estimated Pearson correla-
tions, and then to achieve the estimated Spearman correlations. The second example is of a
hypothetical time series of Poisson counts with seasonal mean ranging between 1 and 9 and
an autoregressive(1) dependence structure.
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1. Introduction

Dependent non-normal data, particularly count-valued data, arise in many fields
of study. The ability to simulate data resembling observed data is necessary to
compare and investigate the behaviour of analytical procedures. It is customary
to include simulation studies in statistical methodology research articles. These
studies can be used to compare statistical procedures, to conduct power analyses,
and to explore robustness. Another use of simulated data is the parametric boot-
strap, where one simulates data according to a null hypothesized model, and the
distribution of a test statistic emerges from repeated simulations.

It is surprisingly difficult to simulate dependent discrete random variables, par-
ticularly count-valued random variables with infinite support such as negative bi-
nomial or Poisson. One of the challenges to simulating dependent discrete random
data is that it is difficult to find a method capable of simulating data from the en-
tire range of possible dependence. Limits to Pearson correlation between Bernoulli
random variables are well known. These limits are a consequence of the Fréchet-
Hoeffding bounds [1], which induce margin-dependent bounds on correlation and
on other measures of monotone dependence.

Another challenge is characterising dependence. For normal data, Pearson corre-
lation perfectly describes dependence. For highly skewed distributions, researchers
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often choose to characterise monotone dependence by nonparametric measures such
as Kendall’s tau or Spearman’s rho.

In this article, we describe a method to simulate random vectors of arbitrary
length with specified discrete univariate marginal distributions and pairwise de-
pendence, which may be specified by either Pearson correlation or Spearman cor-
relation. Our method simulates data from a multivariate Gaussian copula and can
achieve any Pearson or Spearman correlation within the constraints imposed by
the Fréchet-Hoeffding bounds.

Other methods of simulating dependent discrete data suffer from more restric-
tive limitations on the degree of achievable dependence than those imposed by the
theoretical bounds. Park et al. [2] develop a method for simulating correlated bi-
nary random variables, based on the observation of Holgate [3] that if Y1, Y2, and
Y are independent Poisson with means λ1, λ2, and λ, then Y1 + Y and Y2 + Y
are dependent Poisson with covariance λ. Park and Shin [4] extend the method for
classes of distributions closed under summation. Madsen and Dalthorp [5] build
on the algorithm of Park and Shin [4] to develop an “overlapping sums” method
for generating vectors of count random variables with given mean, variance, and
Pearson correlation. This method allows for high correlations between count ran-
dom variables with similar means, but suffers from correlation limits well below the
Fréchet-Hoeffding bounds when means are only moderately different. Furthermore,
the method does not allow negative correlations.

Simulating a lognormal-Poisson hierarchy is a simple method to generate depen-
dent counts, but cannot achieve even moderate correlation levels when the means
are small. With this method, a vector of correlated normal random variables are
generated, then exponentiated to form a vector of lognormal random variables.
These lognormal random variables serve as means for a vector of conditionally in-
dependent Poisson random variables. Madsen and Dalthorp [5] give formulas for
moments and correlations of the normal vector that will yield a lognormal-Poisson
vector with specified moments and correlations.

Pearson and Spearman correlation are discussed in Section 2. Section 3 describes
the simulation method. In Section 4 we show that the method can achieve any
Pearson or Spearman correlation within the Fréchet-Hoeffding bounds. Section 5
gives two examples. The first example employs the epileptic seizure example of
Diggle et al. [6]. We estimate marginal means and variances, as well as Pearson
and Spearman correlation, from the data, then simulate data with these moments
as targets. For the second example, we simulate data from a hypothetical Poisson
time series with seasonally-varying mean and AR(1) Pearson correlation.

For the special case when the target marginal distributions are Bernoulli, the
simulation method developed in this article is given by Emrich and Piedmonte
[7]. Spearman correlation, when rescaled as in Section 2, is equal to Pearson cor-
relation for Bernoulli random variables. Shin and Pasupathy [8] give the method
for Poisson random variables with specified Pearson correlation. We generalize the
method to count-valued random variables with infinite support and either Pearson
or Spearman correlation.

2. Pearson correlation and Spearman correlation

The linear association between random variables X and Y is described by the pop-
ulation correlation coefficient, also called the Pearson product-moment correlation
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coefficient,

ρ(X, Y ) =
E(XY )−E(X)E(Y )

[var(X) var(Y )]1/2
. (1)

For bivariate normal (X, Y ), ρ perfectly describes the dependence between X and
Y . For non-normal distributions, nonparametric measures of monotone dependence
such as Kendall’s tau or Spearman’s rho may more accurately capture the degree
of dependence unless X and Y have a straight-line relationship. Mari and Kotz [9,
Chapter 2] discuss drawbacks and limitations of ρ.

Kruskal [10] details several measures of dependence between random variables
X and Y , including the Spearman correlation coefficient

ρS(X,Y ) = 3{P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]} (2)

where (X1, Y1)
d= (X, Y ), X2

d= X, Y3
d= Y such that X2 and Y3 are independent of

one another and of (X1, Y1). For continuous marginals, (2) provides a satisfactory
measure of monotone dependence. For discrete marginals, however, the non-zero
probability of ties (two or more jth largest values in the sample) creates some
difficulties. In particular, it can happen that the Spearman correlation of X with
itself is less than 1 [11, Example 8]. To remedy this, we can rescale ρS as in
Nešlehová [12, Definition 11]. For any pair of jointly distributed random variables X
and Y , let p(x) = P (X = x) and q(y) = P (Y = y). Define the rescaled Spearman
correlation coefficient to be

ρRS(X, Y ) =
ρS(X, Y )

{[1−∑
x p(x)3][1−∑

y q(y)3]}1/2
. (3)

Note that when X and Y are continuous, the probability of ties is zero, and no
rescaling is necessary. Accordingly, the denominator of (3) is 1 because p(x) =
q(y) = 0 for all x, y. When X and Y are discrete, p(x) and q(y) are the respective
probability mass functions.

An appealing feature of ρRS is that its sample analog is equal to the sample
Pearson correlation coefficient of the midranks. Specifically, for a bivariate sample
(X1, Y1), . . . , (Xn, Yn), if the distribution of (X,Y ) is taken to be the empirical dis-
tribution function of the sample, (3) coincides with the sample Pearson correlation
coefficient of the midranks [12, Theorem 15], commonly called the sample rank cor-
relation. Midranks are used for ranking in the presence of ties and are computed
as follows. If Xi+1 = . . . = Xi+u would have been assigned ranks p1, . . . , pu had
they not been tied, for j = i+1, . . . , i+u assign r(Xj) = u−1

∑u
k=1 pk, the average

rank of these u observations in the absence of ties.

3. Simulation method

This section describes the method for simulating a vector Y of length n where each
Yi has a given discrete marginal distribution function Fi, and each pair (Yi, Yj) has
a given Pearson correlation (1) or rescaled Spearman correlation coefficient (3).

The simulation method begins by generating an n-vector Z of standard normal
random variables with Pearson correlation matrix ΣZ , i.e. the ijth element of ΣZ

is ρ(Zi, Zj). Each Zi is then transformed to Ui = Φ(Zi), where Φ is the univariate
standard normal distribution function. The Ui are uniform on (0, 1) [13, Theorem
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2.1.10], and ρS(Zi, Zj) = ρS(Ui, Uj). Ui is then transformed to Yi ≡ F−1
i (Ui) where

F−1
i (u) = inf{y : Fi(y) ≥ u}, (4)

ensuring that Yi ∼ Fi, even when Fi is not continuous.
The elements of ΣZ are chosen to yield the desired Pearson or Spearman corre-

lations among the Yi. Details are given below for count-valued Yi and for Bernoulli
Yi.

When the Yi are discrete, one must take care to distinguish Spearman correlation
ρS from its rescaled version ρRS . In particular, if target Spearman correlations are
obtained from the midranks of data, the resulting estimate is of ρRS and must be
multiplied by {[1−∑

x p(x)3][1−∑
y q(y)3]}1/2, the denominator of (3), to obtain

the target ρS . This is the situation illustrated by the seizure example of Section 5.

3.1. Connection of the simulation method to the Gaussian copula

A bivariate copula is a bivariate distribution function with uniform marginals. The
bivariate Gaussian copula is given by C(u, v) = Φδ[Φ−1(u),Φ−1(v)] where Φ is the
univariate standard normal distribution function, and Φδ is the bivariate standard
normal distribution function with correlation parameter δ. By Sklar’s theorem [14],
H(y1, y2) = Φδ{Φ−1[F1(y1)], Φ−1[F2(y2)]} defines a bivariate probability distribu-
tion with marginals F1 and F2. The multivariate Gaussian copula is the logical
extension to n-dimensional distributions, and, since Sklar’s theorem holds for ar-
bitrary n, yields a joint distribution function for random vector [Y1, . . . , Yn] with
given marginal distribution functions F1, . . . , Fn:

H(y1, . . . , yn) = ΦΣ{Φ−1[F1(y1)], . . .Φ−1[Fn(yn)]}, (5)

where ΦΣ represents the n-variate standard normal distribution function with cor-
relation matrix Σ.

The relationship between standard normal Zi and count-valued Yi is Yi =
F−1

i [Φ(Zi)]. Equation (4) implies that for integer y,

Yi ≤ y if and only if Zi ≤ Φ−1[Fi(y)]

Yi ≥ y if and only if Zi > Φ−1[Fi(y − 1)]. (6)

Zi and Zj are elements of multivariate normal vector Z, so (Zi, Zj) is bivariate
normal.

Proposition 3.1: The simulation method proposed in this section produces
[Y1, . . . , Yn] with marginal distribution functions F1, . . . , Fn and joint distribution
given by (5).

Proof : Let Yi, Zi, and F−1
i , i = 1, . . . n be defined as above. By (6), P (Y1 ≤

y1, . . . , Yn ≤ yn) = P{Z1 ≤ Φ−1[Fi(y)], . . . , Zn ≤ Φ−1[Fn(y)]}, which is (5). ¤

Any 2-dimensional marginal H(yi, yj) of (5) is given by a bivariate Gaussian
copula. The elements of the n×n copula correlation matrix Σ in (5) are determined
by finding the correlation parameter δ for each 2-dimensional marginal.
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3.2. Simulating counts

Suppose the target marginals are count-valued with distribution functions Fi and
probability mass functions fi, i = 1, . . . , n. Let µi and σ2

i denote E(Yi) and var(Yi)
respectively. We first describe the method to simulate Yi ∼ Fi, i = 1, . . . , n with
specified pairwise Pearson correlations ρ(Yi, Yj).

For count-valued random variables Yi and Yj , E(YiYj) =
∑∞

r=0

∑∞
s=0 P (Yi >

r, Yj > s). Thus, using the two-dimensional marginal distribution function of (5),
Pearson correlation (1) can be written as

ρ(Yi, Yj) =
1

σiσj

{ ∞∑

r=0

∞∑

s=0

(1− Fi(r)− Fj(s) + Φδ{Φ−1[Fi(r)], Φ−1[Fj(s)]})− µiµj

}
.

(7)
Given target Pearson correlation ρ(Yi, Yj) for each pair i 6= j, the necessary corre-
lation ρ(Zi, Zj) is found by numerically solving (7) for δ. Correlation matrix ΣZ

is obtained by solving (7) for each unique combination {Fi, Fj , ρ(Yi, Yj)}.
A similar method achieves specified Spearman correlation. Denote the target

(unrescaled) Spearman correlations by ρS(Yi, Yj). Using the expression in (2) and
supposing Y ′

i ∼ Fi and Y ′
j ∼ Fj but Y ′

i and Y ′
j are independent of each other and

of Yi and Yj , ρS(Yi, Yj) can be written as

ρS(Yi, Yj) = 3[P (Yi < Y ′
i , Yj < Y ′

j ) + P (Yi > Y ′
i , Yj > Y ′

j )

−P (Yi < Y ′
i , Yj > Y ′

j )− P (Yi > Y ′
i , Yj < Y ′

j )] (8)

= 3
∞∑

r=0

∞∑

s=0

fi(r)fj(s)[P (Yi ≤ r − 1, Yj ≤ s− 1) + P (Yi ≥ r + 1, Yj ≥ s + 1)

−P (Yi ≤ r − 1, Yj ≥ s + 1)− P (Yi ≥ r + 1, Yj ≤ s− 1)]. (9)

Using (6), the right-hand side of equation (9) can be written as:

ρS(Yi, Yj) = 3
∞∑

r=0

∞∑

s=0

fi(r)fj(s)(Φδ{Φ−1[Fi(r − 1)], Φ−1[Fj(s− 1)]}

+ Φδ{Φ−1[1− Fi(r)], Φ−1[1− Fj(s)]}
− Φ−δ{Φ−1[Fi(r − 1)], Φ−1[1− Fj(s)]}
− Φ−δ{Φ−1[1− Fi(r)], Φ−1[Fj(s− 1)]}). (10)

Again, correlation matrix ΣZ is obtained by solving (10) for each unique com-
bination {Fi, Fj , ρS(Yi, Yj)}.

The simulation algorithm requires that ΣZ is positive definite or has a positive
definite submatrix and the remaining elements are ±1 (see Section 4 for details).

3.3. Simulating binary variates

For completeness, we summarise the method for the special case of Bernoulli
marginals. This algorithm was developed by Emrich and Piedmonte [7]. A little
algebra verifies that for Yi ∼ Bernoulli(µi), ρRS(Yi, Yj) = ρ(Yi, Yj). To simulate
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with given ρ(Yi, Yj), correlation δ = ρ(Zi, Zj) must be the solution to

Φδ[Φ−1(µi), Φ−1(µj)] = ρRS(Yi, Yj)[µi(1− µi)µj(1− µj)]1/2 + µiµj ,

and

Yi = F−1
i (Zi) =

{
1 if Φ(Zi) > 1− µi

0 if Φ(Zi) ≤ 1− µi.

3.4. Simulating continuous non-normal random variables with specified
Spearman correlation

If the marginals Fi are continuous, then each F−1
i is a strictly increasing function

on (0, 1), so ρS(Yi, Yj) = ρS(Ui, Uj) = ρS(Zi, Zj). Elements ρ(Zi, Zj) of ΣZ needed
to yield target ρS(Yi, Yj) are determined by the relation

ρS(Zi, Zj) =
6
π

arcsin[ρ(Zi, Zj)/2]

given by Kruskal [10].
Achieving target Pearson correlation in the continuous case entails approximating

E(YiYj) =
∫ ∫

y1y2Φδ{Φ−1[F1(y1)], Φ−1[F2(y2)]}]dy1dy2. The numerical approxi-
mation method will vary depending on the marginal distributions. Since our focus
is discrete marginals, we do not pursue this problem here.

3.5. Computing

The algorithm described in Section 3.2 is computationally intensive. The difficulty
is that equations (7) or (10) must be solved numerically, and that they must be
solved multiple times in order to obtain correlation matrix ΣZ . We have imple-
mented the algorithm in R [15], which costs nothing but is much slower than
a compiled language like C or Fortran. To minimise computing effort, our code
avoids loops and makes use of vectorised functions. We also solve (7) or (10) only
for unique combinations of {Fi, Fj , ρ(Yi, Yj)} or {Fi, Fj , ρS(Yi, Yj)}. Because ΣZ

is symmetric with 1’s along the diagonal, it will be necessary to solve (7) or (10)
at most n(n− 1)/2 times. Each unique combination of marginal distributions and
correlation does not depend on any other combination, so solving (7) or (10) for δ
can easily be done in parallel, which would reduce computing time.

In Section 5, we give computing time required to solve (7) or (10) for each of the
three examples described.

To implement the algorithm, the infinite sums in (7) and (10) must be approxi-
mated with finite sums. Appendix C gives a bound on the error in approximating
(10). Given a tolerance ε for approximating (10) by a finite sum, set the upper
limit for the index r to

Ki = dF−1
i [(1− ε/6)1/2]e, (11)

where dxe denotes the smallest integer ≥ x. Replacing i with j in (11) gives the
upper limit for s. Plugging Ki and Kj into the bound given by Lemma C.1 implies
that the absolute difference between (10) and the approximation is no more than
ε.

Shin and Pasupathy [8] bound the error in approximating (7) when the marginal
distributions are Poisson, but their bound employs a single upper limit K for both
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sums. For the examples in Section 5, we found Ki = 4dF−1
i (0.9975)e sufficient.

We have been unable to find an error bound for approximating (7) for arbitrary
marginal distributions.

4. Limits on dependence

For any bivariate distribution function with marginals F1 and F2, the pointwise
upper bound is M(y1, y2) = min[F1(y1), F2(y2)] and the pointwise lower bound is
W (y1, y2) = max[F1(y1)+F2(y2)−1, 0]. These are the Fréchet-Hoeffding bounds [1].
Furthermore, M and W define upper and lower limits for Pearson correlation (1),
that is, if we let ρ(M) and ρ(W ) denote the Pearson correlation between random
variables with joint distribution M and W respectively, then for any (Y1, Y2) with
marginals F1 and F2, ρ(Y1, Y2) ∈ [ρ(W ), ρ(M)] [16]. Corollary 3.2 of [17] establishes
that Spearman’s ρ similarly falls between bounds determined by M and W .

Chaganty and Joe [18] discuss the consequences of these bounds on correlation
matrices for vectors of Bernoulli variates. They conduct a simulation study to com-
pare methods of generating vectors of correlated Bernoulli data, and observe that
Emrich and Piedmonte’s method [7] generally achieves a wider range of correlations
than other methods. This observation illustrates the result we prove in Theorem 4.1.
Madsen and Dalthorp [5] give an expression for the maximum Pearson correlation
between count-valued random variables and show that the simulation method of
Park and Shin [4] imposes more restrictive limits.

The bivariate Gaussian copula achieves the Fréchet-Hoeffding bounds M and W
by setting δ = 1 and δ = −1 respectively. Thus our simulation method is capable of
simulating (Yi, Yj) with maximum or minimum ρ or ρS . Note however that setting
an off-diagonal entry of ΣZ to ±1 will destroy the positive-definiteness of ΣZ . If
maximal or minimal ρ or ρS is desired between Yi and Yj , one would simulate the
random vector [Y1, . . . , Yj−1, Yj+1, . . . , Yn] using the method described in Section
3. Then set Yj = F−1

j [Φ(Zi)] to achieve ρ(Yi, Yj) = ρ(M), or set Yj = F−1
j [Φ(−Zi)]

to achieve ρ(Yi, Yj) = ρ(W ). The same procedure achieves ρS(M) or ρS(W ).
For n = 2 and given marginal distributions F1 and F2, the simulation method of

Section 3.2 can achieve not only maximum and minimum ρ, but, as the following
theorem demonstrates, any ρ in [ρ(W ), ρ(M)].

Theorem 4.1 : Let Y1 ∼ F1 and Y2 ∼ F2 denote a pair of random variables
simulated according to the method in Section 3 with ρ(Z1, Z2) = δ. Assume Y1

and Y2 have finite variance. Let ρ∗(δ) denote ρ(Y1, Y2) as a function of δ. Then
{ρ∗(δ) : δ ∈ [−1, 1]} = [ρ(W ), ρ(M)].

Appendix A proves that ρ∗ is a continuous function of δ, and the result follows
since, as noted above, ρ∗(−1) = ρ(W ) and ρ∗(1) = ρ(M).

A similar result holds for Spearman correlation, provided F1 and F2 have the
following property:

lim
x↑x0

Fi(x) = Fi(x0 − εi) (12)

for all x0 in the support of Fi, for some εi depending on Fi but not on x0. Condition
(12) typically holds. For example, if Yi is continuous, let εi = 0, and if Yi is count-
valued, let εi = 1.

Theorem 4.2 : Let Y1 ∼ F1 and Y2 ∼ F2 denote a pair of random variables
simulated according to the method in Section 3 with ρ(Z1, Z2) = δ. Let ρ∗S(δ) denote
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ρS(Y1, Y2) as a function of δ. Assume the Fi satisfy (12). Then {ρ∗S(δ) : δ ∈
[−1, 1]} = [ρS(W ), ρS(M)].

Appendix B proves that ρ∗S is a continuous function of δ, and the result follows
as above.

Though any pairwise ρ or ρS can be achieved by our method, the algorithm
requires simulation of the standard normal n-vector Z with correlation matrix ΣZ .
This step requires that ΣZ is positive definite or, as described above, has a positive
definite submatrix and remaining off-diagonal entries are ±1. This requirement
restricts three- and higher-dimensional dependence. The relationship between the
positive definiteness of ΣZ and the possible dependence structures of Y1, . . . , Yn is
a topic of future research.

In our experience mimicking actual data sets, ΣZ is nearly always positive defi-
nite. When ΣZ is not positive definite, in practice there are likely to be only a few
slightly negative eigenvalues, and these can be set to a small positive number with-
out noticeably disturbing the target correlations. If ΣZ is more than just slightly
non-positive definite, we recommend checking that the target correlations ρ or ρS

themselves form a positive definite matrix.

5. Examples

The first example is from the epileptic seizure data discussed in Diggle et al. [6] and
available in the R software package geepack [15]. The data are counts of epileptic
seizures for 58 subjects in four two-week periods and one eight-week baseline period.
The subjects are split into two groups. One group received the anti-epileptic drug
progabide, and the other received a placebo.

Let Yij denote the jth observation on the ith subject. Because the observations
are overdispersed counts, the marginal distribution of Yij will be simulated as
negative binomial. Target quantities are taken from the fitted model in Table 8.10
of Diggle et al. [6]. In particular,

µij = E(Yij) = exp[log(tj) + 1.35 + 0.11x1j − 0.11x2i − 0.3x1jx2i]

where i = 1, . . . , 58 indexes the subject and j = 0, . . . , 4 indexes the period. The
covariates are

x1j =
{

0 if j = 0 (baseline visit)
1 if j = 1, 2, 3, or 4

x2i =
{

0 if subject i is in the placebo group
1 if subject i is in the progabide group.

To account for the differing lengths of the periods,

tj =
{

8 if j = 0
2 if j = 1, 2, 3, or 4.

The model allows for only four distinct means determined by crossing baseline vs.
non-baseline and progabide vs. placebo.

Target variances are the product of the target means and the estimated overdis-
persion parameter: σ2

ij = 10.4µij .
Diggle et al. [6] assume a simple one-parameter exchangeable Pearson correlation

structure among observations from a single subject and independence between
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subjects. We take the point estimate of this correlation parameter ρ̂(Yij , Yij′) = 0.6
as target Pearson correlation for j 6= j′.

Given target correlations ρ(Yij , Yij′), means µij , and variances σ2
ij , where i =

1, . . . , 58 and j = 0, . . . , 4, 10 000 vectors of length 290 were generated by 10 000
independent repetitions of the procedure described in Section 3.2. For each of the
290 random variables, Monte Carlo moments were calculated by averaging over
the 10 000 simulations. Figures 1(a), (b), and (c) show that the simulations achieve
their targets by plotting the Monte Carlo moments vs. target values.
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Figure 1. Plots of target means, variances, Pearson correlations, and rescaled Spearman correlations vs.
Monte Carlo sample means, variances, Pearson correlations, and Pearson midrank correlations for the
simulated seizure data. Each Monte Carlo quantity is the sample moment of the simulated value for a
single subject and period, taken over the 10 000 simulations. The means and variances shown are from the
simulation to achieve given Spearman correlations and are essentially the same as those in the simulation
to achieve given Pearson correlations.

As an alternative to simulating dependence as exchangeable Pearson correlation,
one can simulate data with rescaled Spearman correlation resembling that of the
seizure data. One might choose this method if the marginal distributions were
highly non-normal, or if one wished to avoid constraining the simulated data to
follow a particular choice of parametric correlation model. We choose the target
rescaled Spearman correlations based on sample values from the seizure data. The
rescaled Spearman correlation between observations on the same subject at two
periods j and j′ is assumed to depend on j and j′ but not on the subject. For
each period j, the counts Yij are transformed to ranks r(Yij), with ties assigned
the midrank value. (Because the means are small, the ranked vectors r(Yij), i =
1, . . . , 58 contain as many as eleven ties at a single rank.) The sample rescaled
Spearman correlation between a subject’s seizure counts at periods j and j′, which
we denote Rjj′ , is the sample Pearson correlation coefficient of the midranks, as
noted in Section 2.
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The simulation method described in Section 3.2 requires target unscaled Spear-
man correlation ρS(Yij , Yij′) = aijaij′Rjj′ where aij = [1−∑

x pij(x)3]1/2 and pij is
the probability mass function of the negative binomial distribution with mean µij

and variance σ2
ij . Different subjects are assumed to be independent, so the target

Spearman correlation between observations on different subjects is zero.
The infinite sum in the definition of aij must be approximated by summing

finitely many terms. We set the upper limit for sum index x to be maxijdµij +
5(σ2

ij)
1/2e. Because we vectorise the calculation of

∑
x p(x)3, it is most efficient to

use a single upper bound for every sum rather than to calculate individual upper
limits.

Given target Spearman correlations ρS(Yij , Yij′), means µij , and variances σ2
ij , we

again generated 10 000 vectors of length 290 by 10 000 repetitions of the procedure
outlined in Section 3.2, this time solving equation (10) for δ to obtain ΣZ . For each
of the 290 random variables, Monte Carlo moments were calculated by averaging
over the 10 000 simulations. Figure 1(d) shows that the simulations achieve the
target rescaled Spearman correlations.

As a second example, we simulate data from a hypothetical time series of Poisson
counts Yt observed monthly for ten years. We assume a seasonal pattern in means
µt = 4 sin(πt/6) + 5 for t = 1, . . . , 120 and an AR(1) Pearson correlation structure
with ρ(Yt, Yt+s) = 0.8s. 10 000 data sets Y1, . . . , Y120 are again simulated according
to the method described in Section 3.2 where normal correlation matrix ΣZ is
obtained by solving (7) for each unique combination of µt, µs, and ρ(Yt, Ys). Plots
of target moments vs. Monte Carlo moments, analogous to those in Figure 1, are
shown in Figure 2, and demonstrate fidelity of simulated data to target moments.
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Figure 2. Plots of target means, variances, and Pearson correlations vs. Monte Carlo sample means,
variances, and Pearson correlations for the hypothetical Poisson time series. Each Monte Carlo quantity is
the sample moment of the simulated value for a Yt, taken over the 10 000 simulations.
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Table 1. For each of the three examples, the number of unique combinations of marginals and correlation, the

time to solve either (7) or (10) for δ, and the time to simulate 10 000 random data sets is given. Marginal

distributions are negative binomial for the seizure examples and Poisson for the time series example. The length

of each simulated sample is n = 290 for the seizure examples and n = 120 for the time series. Time is processor

time in seconds on a 2.4GHz quad core desktop computer running Windows XP.

Unique
Example Combinations Solve for δ Simulation

Seizure (Pearson) 16 1093.25 128.67
Seizure (Spearman) 32 1071.83 131.08

Time Series 3802 29 738.98 36.61

We report the computing time required for each example in Table 1, run on a on
a 2.4GHz quad core desktop computer running Windows XP. Repeatedly solving
either (7) or (10) for δ takes the most time, ranging from about 7.8 seconds to about
68 seconds per unique combination of marginals and target correlation. Once these
equations are solved, and Gaussian correlation matrix ΣZ is given, simulating the
data is fairly fast, ranging from 36.61 seconds for 10 000 data sets of length n = 120
to 130 seconds for 10 000 data sets of length n = 290.

6. Conclusion

This article develops a general method for simulating n-dimensional random vec-
tors with given univariate discrete marginal distributions and dependence struc-
ture characterised by an n × n matrix of pairwise Pearson or rescaled Spearman
correlations. Spearman correlation is a common measure of association for highly
non-normal distributions.

Target moments may be chosen to mimic actual data. Target Pearson correlations
may be obtained from an assumed parametric correlation model, such as the ex-
changeable model used with the seizure data in Section 5, by substituting estimated
quantities for the parameters. To establish target rescaled Spearman correlations
from a data set of discrete variates, the data are ranked, and ties are assigned
the midrank. The targets are taken to be the sample Pearson correlation of the
midranks. Corrections depending only on the marginal distributions are applied to
obtain target (unscaled) Spearman correlations. To obtain corresponding Pearson
correlations of bivariate Gaussian copulas, equation (10) is solved for each unique
combination of marginal distributions and target rescaled Spearman correlation,
or equation (7) is solved for each unique combination of marginal distributions
and target Pearson correlation. If the Pearson correlations of bivariate Gaussian
copulas constitute a positive definite correlation matrix, then the corresponding
multivariate Gaussian copula can be used to simulate the data.

To illustrate the technique, data resembling Diggle et al.’s [6] epileptic seizure
data are simulated. These data are marginally overdispersed counts, and we simu-
late them as negative binomial with dependence given by either Pearson correlation
or rescaled Spearman correlation. A second example simulates a hypothetical time
series of Poisson counts with seasonal mean and AR(1) Pearson correlation. We
mention that any combination of marginal distributions can be used, i.e. elements
of the simulated n-vector need not have a marginal distribution from the same
family. In principle, one could simulate a dependent vector having both continuous
and discrete elements.

The algorithm is computationally intensive, primarily because it requires re-
peated numerical solution of equations (7) or (10). However, it is tractable even
in a non-compiled language like R [15], which we use. Code used for the seizure



August 28, 2013 10:6 Journal of Statistical Computation & Simulation MadsenBirkes2013

12 Madsen and Birkes

example is available from the authors.

Appendix A. Proof of theorem 4.1

Proof : ρ∗(δ) is a function from δ ∈ [−1, 1] into [ρ(W ), ρ(M)] with ρ∗(−1) =
ρ(W ) and ρ∗(1) = ρ(M). If ρ∗(δ) is continuous, then the image of [−1, 1] must be
connected and therefore equal to [ρ(W ), ρ(M)].

From (1), it is sufficient to show that E(Y1Y2) is a continuous function of δ. Write

E(Y1Y2) =
∞∑

r=0

∞∑

s=0

P{Y1 > r, Y2 > s}

=
∞∑

r=0

∞∑

s=0

P{Y1 ≥ r + 1, Y2 ≥ s + 1}

=
∞∑

r=0

∞∑

s=0

P{Z1 > Φ−1[F1(r)], Z2 > Φ−1[F1(s)]

=
∞∑

r=0

∞∑

s=0

hrs(δ),

where hrs(δ) = P{Z1 > Φ−1[F1(r)], Z2 > Φ−1[F1(s)]. We will first prove that
for each {r, s}, hrs(δ) is continuous in δ. Then we will show hrs(δ) ≤ Mrs where
Mrs does not depend on δ and

∑∞
r=0

∑∞
s=0 Mrs < ∞, so that

∑∞
r=0

∑∞
s=0 hrs(δ)

converges uniformly for δ ∈ [−1, 1] by the Weierstrass M -test. Continuity for each
hrs and uniform convergence of

∑∑
hrs implies continuity of

∑∑
hrs = E(Y1Y2).

To prove continuity of hrs(δ), let {z1, z2} = {Φ−1[F1(r)], Φ−1[F1(s)]} and note
that (Z1, Z2)

d= [Z1, δZ1 + (1− δ2)1/2T ] where Z1, T ∼ iid N(0, 1). Then

hrs(δ) = P{Z1 > z1, Z2 > z2}
= P{Z1 > z1, δZ1 + (1− δ2)1/2T > z2}
= E

[
P

{
Z1 > z1, δZ1 + (1− δ2)1/2T > z2

∣∣∣T
}]

=
∫ [

P{Z1 > z1, δZ1 + (1− δ2)1/2t > z2}
]
dΦ(t).

Continuity of hrs(δ) follows from Lebesgue’s dominated convergence theorem if
P{Z1 > z1, δZ1 +(1− δ2)1/2t > z2} is continuous in δ, since P{Z1 > z1, δZ1 +(1−
δ2)1/2t > z2} ≤ 1 and

∫
dΦ(t) < ∞.

To verify continuity of P{Z1 > z1, δZ1 +(1− δ2)1/2t > z2}, consider cases δ > 0,
δ < 0, and δ = 0.

If δ > 0, then

P{Z1 > z1, δZ1 + (1− δ2)1/2t > z2} = P

{
Z1 > z1, Z1 >

−(1− δ2)1/2t + z2

δ

}

= 1− Φ

(
max

{
z1,

−(1− δ2)1/2t + z2

δ

})
,
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which is continuous for δ ∈ (0, 1].
If δ < 0, then

P{Z1 > z1, δZ1 + (1− δ2)1/2t > z2} = P

{
Z1 > z1, Z1 <

−(1− δ2)1/2t + z2

δ

}

= max

{
0,Φ

(
−(1− δ2)1/2t + z2

δ

)
− Φ(z1)

}

which is continuous for δ ∈ [−1, 0).
To check continuity of P{Z1 > z1, δZ1 + (1 − δ2)1/2t > z2} at δ = 0, consider

cases t > z2 and t < z2 (case t = z2 can be ignored since this is a set of measure
0), and calculate limits of as δ → 0+ and δ → 0−. These should both equal

P{Z1 > z1, t > z2} =
{

1− Φ(z1), t > z2

0 otherwise (A1)

When t > z2, limδ→0[−(1− δ2)1/2t+z2] = z2− t < 0, so limδ→0+
−(1−δ2)1/2t+z2

δ =

−∞ whereas limδ→0−
−(1−δ2)1/2t+z2

δ = ∞. Then

lim
δ→0+

P{Z1 > z1, δZ1 + (1− δ2)1/2t > z2} = lim
δ→0+

{
1− Φ

(
max

[
z1,

−(1− δ2)1/2t + z2

δ

])}

= 1− Φ(z1),

and

lim
δ→0−

P{Z1 > z1, δZ1 + (1− δ2)1/2t > z2} = lim
δ→0−

max

{
0, Φ

(
−(1− δ2)1/2t + z2

δ

)
− Φ(z1)

}

= Φ(∞)− Φ(z1)

= 1− Φ(z1),

in agreement with (A1).
When t < z2, limδ→0[−(1− δ2)1/2t+z2] = z2− t > 0, so limδ→0+

−(1−δ2)1/2t+z2

δ =

∞ and limδ→0−
−(1−δ2)1/2t+z2

δ = −∞. Then

lim
δ→0+

P{Z1 > z1, δZ1 + (1− δ2)1/2t > z2} = lim
δ→0+

{
1− Φ

(
max

[
z1,

−(1− δ2)1/2t + z2

δ

])}

= 1− Φ(∞)

= 0,

and

lim
δ→0−

P{Z1 > z1, δZ1 + (1− δ2)1/2t > z2} = lim
δ→0−

max

{
0, Φ

(
−(1− δ2)1/2t + z2

δ

)
− Φ(z1)

}

= 0,

also in agreement with (A1).
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Since the limits at 0 from the left and right agree with the value of P{Z1 >
z1, δZ1 + (1− δ2)1/2t > z2}} at δ = 0, we conclude continuity hrs at δ = 0.

To conclude continuity of E(Y1Y2) =
∑

r

∑
s hrs, we need to show its uniform

convergence. This follows because hrs = P{Y1 > r, Y2 > s} ≤ P{Y1 + Y2 >
r, Y1 + Y2 > s} and

∑
r

∑
s P{Y1 + Y2 > r, Y1 + Y2 > s} = E[(Y1 + Y2)2] < ∞. ¤

Appendix B. Proof of theorem 4.2

Proof : Using the same reasoning as in the proof of Theorem 4.1, we show ρ∗S(δ) is
a continuous function from δ ∈ [−1, 1] into [ρS(W ), ρS(M)] with ρ∗S(−1) = ρS(W )
and ρ∗S(1) = ρS(M). Thus the image of [−1, 1] must be connected and therefore
equal to [ρS(W ), ρS(M)].

Let Y ′
1 ∼ F1 and Y ′

2 ∼ F2 be independent of Y1 and Y2, and of each other. From
(8),

ρ∗S(δ) = 3[P (Y1 > Y ′
1 , Y2 > Y ′

2) + P (Y1 < Y ′
1 , Y2 < Y ′

2)

−P (Y1 > Y ′
1 , Y2 < Y ′

2)− P (Y1 < Y ′
1 , Y2 > Y ′

2)]. (B1)

Continuity of ρ∗S(δ) follows from continuity of each of the four terms in (B1). We
demonstrate continuity of p(δ) ≡ P (Y1 > Y ′

1 , Y2 < Y ′
2). The other three arguments

are similar. With ε2 from condition (12), we can write

p(δ) = P{F−1
1 [Φ(Z1)] > Y ′

1 , F
−1
2 [Φ(Z2)] < Y ′

2 ]}
= P{Z1 > Φ−1[F1(Y ′

1)], Z2 ≤ Φ−1[F2(Y ′
2 − ε2)]}.

Noting that (Z1, Z2)
d= [Z1, δZ1 + (1− δ2)1/2T ] where Z1, T ∼ iid N(0, 1),

p(δ) = P{Z1 > Φ−1[F1(Y ′
1)], δZ1 + (1− δ2)1/2T ≤ Φ−1[F2(Y ′

2 − ε2)]}
= E(P{Z1 > Φ−1[F1(Y ′

1)], δZ1 + (1− δ2)1/2T ≤ Φ−1[F2(Y ′
2 − ε2)]|T, Y ′

1 , Y
′
2})

=
∫

h(t, y1, y2; δ)d(Φ× F1 × F2)(t, y1, y2),

where h(t, y1, y2; δ) = P{Z1 > Φ−1[F1(y1)], δZ1 + (1− δ2)1/2t ≤ Φ−1[F2(y2 − ε2)]}.
By the Lebesgue dominated convergence theorem, p(δ) is continuous if

h(t, y1, y2; δ) is continuous in δ. We consider cases δ > 0, δ < 0, and δ = 0.
For δ > 0,

h(t, y1, y2; δ) = P (Φ−1[F1(y1)] < Z1 ≤ δ−1{Φ−1[F2(y2 − ε2)]− (1− δ2)1/2t})
= max[k(δ)− F1(y1), 0]

where k(δ) = Φ(δ−1{Φ−1[F2(y2 − ε2)] − (1 − δ2)1/2t}). Thus h(t, y1, y2; δ) is a
continuous function of δ ∈ (0, 1].

For δ < 0,

h(t, y1, y2; δ) = P{Z1 > Φ−1[F1(y1)], Z1 ≥ k(δ)}
= 1−max[F1(y1), k(δ)],

a continuous function of [−1, 0).
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For δ = 0,

h(t, y1, y2; 0) = P{Z1 > Φ−1[F1(y1)], t ≤ Φ−1[F2(y2 − ε2)]} = A · [1− F1(y1)],

where A = 1 if t ≤ Φ−1[F2(y2 − ε2)] and A = 0 otherwise.
To show continuity at 0, we need limδ→0± h(t, y1, y2; δ) = h(t, y1, y2; 0). If

t ≤ Φ−1[F2(y2 − ε2)], then limδ→0+ k(δ) = Φ(∞) = 1, and if t > Φ−1[F2(y2 −
ε2)], then limδ→0+ k(δ) = Φ(−∞) = 0, so limδ→0+ k(δ) = A, which implies
limδ→0+ h(t, y1, y2; δ) = max[A − F1(y1), 0] = A[1 − F1(y1)] = h(t, y1, y2; 0). A
similar argument shows that limδ→0− h(t, y1, y2; δ) = h(t, y1, y2; 0). ¤

Appendix C. Bound on error

This section calculates the error made by approximating the infinite sums in equa-
tion (10) with finite sums. Throughout this section, F1 and F2 are the fixed marginal
distribution functions of Y1 and Y2.

For (r, s) ∈ N2, define

g(r, s, δ) =(Φδ{Φ−1[F1(r − 1)], Φ−1[F2(s− 1)]}
+ Φδ{Φ−1[1− F1(r)], Φ−1[1− F2(s)]}
− Φ−δ{Φ−1[F1(r − 1)],Φ−1[1− F2(s)]}
− Φ−δ{Φ−1[1− F1(r)],Φ−1[F2(s− 1)]}.

so that the right-hand side of (10) is 3
∑∞

r=0

∑∞
s=0 f1(r)f2(s)g(r, s, δ). Solving the

equation numerically requires approximating 3
∑∞

r=0

∑∞
s=0 f1(r)f2(s)g(r, s, δ) by

3
∑K1

r=0

∑K2
s=0 f1(r)f2(s)g(r, s, δ).

Lemma C.1: Let

e(K1,K2) = 3
∞∑

r=0

∞∑

s=0

f1(r)f2(s)g(r, s, δ)− 3
K1∑

r=0

K2∑

s=0

f1(r)f2(s)g(r, s, δ).

Then |e(K1, K2)| < 6[1− F1(K1)F2(K2)].

Proof : Since g(r, s, δ) has the form g = a + b− c− d where a, b, c, d ∈ (0, 1), a + b
and c + d are in (0, 2), and we conclude that g ∈ (−2, 2), i.e. |g| < 2. Now,

|e(K1,K2)| = 3

∣∣∣∣∣
K1∑

r=0

∞∑

s=K2+1

f1(r)f2(s)g(r, s, δ) +
∞∑

r=K1+1

∞∑

s=0

f1(r)f2(s)g(r, s, δ)

∣∣∣∣∣

≤ 3

[
K1∑

r=0

∞∑

s=K2+1

f1(r)f2(s)|g(r, s, δ)|+
∞∑

r=K1+1

∞∑

s=0

f1(r)f2(s)|g(r, s, δ)|
]

< 6

[
K1∑

r=0

∞∑

s=K2+1

f1(r)f2(s) +
∞∑

r=K1+1

∞∑

s=0

f1(r)f2(s)

]

= 6[P (Y ′
1 ≤ K1, Y

′
2 > K2) + P (Y ′

1 > K1)]

where Y ′
1 ∼ F1 and Y ′

2 ∼ F2 and Y ′
1 and Y ′

2 are independent. The last expression
is equal to 6[1− F1(K1)F2(K2)]. ¤
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