Homework \#1

(due Wednesday, January 17, 2024)

1. (10 pts) Consider lowering and raising operators defined as follows:

$$
\mathrm{L}_{+}=\mathrm{L}_{\mathrm{x}}+\mathrm{iL}_{\mathrm{y}} ; \mathrm{L}_{-}=\mathrm{L}_{\mathrm{x}}-\mathrm{iL}_{\mathrm{y}}
$$

Using the commutation relations between various components of the angular momentum, calculate:
(a) $\left[\mathrm{L}_{\mathrm{z}}, \mathrm{L}_{+}\right]$and $\left[\mathrm{L}_{\mathrm{z}}, \mathrm{L}_{-}\right]$;
(b) $\left[\mathbf{L}^{2}, \mathrm{~L}_{+}\right]$and $\left[\mathbf{L}^{2}, \mathrm{~L}_{-}\right]$;
(c) Express L.L. L_{+}and $L_{+} L_{-}$in terms of \mathbf{L}^{2} and L_{z}.
2. (10 pts) Based on your reading assignment concerning properties of spherical harmonics, investigate the parity of the spherical harmonics $\mathrm{Y}_{l}{ }^{m}(\theta, \varphi)$. In particular, how does the function $\mathrm{Y}_{l}^{m}(\theta, \varphi)$ change under parity transformation, i.e. $\theta \rightarrow \pi-\theta, \varphi \rightarrow \pi+\varphi$?
3. (10 pts) Sakurai 3.24
4. Reading assignment: spherical harmonics (any text you like) + Sakurai 3.63.7.

