Homework \#4

> (due Wednesday, February 7, 2024)

1. (10 pts) For the hydrogen atom, find the expectation value of $1 / r$ (r is the distance between the particles) in the state $|n, l, m\rangle$.
2. (20 pts) Find the number of s bound states for a particle of mass m moving in a potential $\mathrm{V}(r)=-\mathrm{V}_{0} \delta(r-a)$, where $\mathrm{V}_{0}>0$. Discuss the existence of bound states in terms of the size of a. Find the normalized wave function of the bound state(s).
3. (10 pts) Show that $(\boldsymbol{\sigma} \cdot \mathbf{a})(\boldsymbol{\sigma} \cdot \mathbf{b})=\mathbf{a} \cdot \mathbf{b}+i \boldsymbol{\sigma} \cdot(\mathbf{a} \times \mathbf{b})$, where \mathbf{a}, \mathbf{b} are arbitrary vectors, and σ 's are the Pauli matrices.
4. (10 pts) Using the Pauli matrices σ_{i}, show:
(a) $\exp \left[-\mathrm{i} \alpha \sigma_{\mathrm{x}}\right]=\mathrm{I} \cos \alpha-\mathrm{i} \sigma_{\mathrm{x}} \sin \alpha$, where I is a unit matrix.
(b) $\exp \left[i \alpha \sigma_{\mathrm{x}}\right] \sigma_{\mathrm{z}} \exp \left[-\mathrm{i} \alpha \sigma_{\mathrm{x}}\right]=\sigma_{\mathrm{z}} \cos (2 \alpha)+\sigma_{\mathrm{y}} \sin (2 \alpha)$
5. Reading: Sakurai 3.1-3.3
