Homework #4

(due Wednesday, February 7, 2024)

1. (10 pts) For the hydrogen atom, find the expectation value of 1/r (r is the distance between the particles) in the state |n,l,m>.

- (20 pts) Find the number of *s* bound states for a particle of mass *m* moving in a potential V (*r*) = V₀ δ(*r*-*a*), where V₀ > 0. Discuss the existence of bound states in terms of the size of *a*. Find the normalized wave function of the bound state(s).
- 3. (10 pts) Show that $(\mathbf{\sigma} \cdot \mathbf{a})(\mathbf{\sigma} \cdot \mathbf{b}) = \mathbf{a} \cdot \mathbf{b} + i\mathbf{\sigma} \cdot (\mathbf{a} \times \mathbf{b})$, where \mathbf{a} , \mathbf{b} are arbitrary vectors, and $\mathbf{\sigma}$'s are the Pauli matrices.
- 4. (10 pts) Using the Pauli matrices σ_i, show:
 (a) exp[-iασ_x] = I cos α i σ_x sin α, where I is a unit matrix.
 (b) exp[iασ_x] σ_z exp[-iασ_x] = σ_z cos (2α) + σ_y sin (2α)
- 5. Reading: Sakurai 3.1-3.3