Homework \#6

(due Wednesday, February 28, 2024)

1. (20 pts) Consider Example 3 of the lecture posted on $02 / 19$. In particular,
a. Find the probability to measure $\mathrm{S}_{\mathrm{x}}=\hbar / 2$ and $-\hbar / 2$.
b. What is the expectation value of S_{x} ?
c. What are the possible outcomes of the measurement of L_{z} ? What are their probabilities?
d. What are the outcomes of the measurement of L^{2} ? What are their probabilities?
e. The measurement yielded $\mathrm{L}^{2}=0$. What is the state of the particle after this measurement?
2. (10 pts) Consider recursion relations given by Eqs. (16.2) and (16.3) (lecture on $02 / 21$, page 9). Eq.(16.2) was derived in class. Now derive Eq.(16.3) using Eq.(16.2) and orthonormality of angular momentum states.
3. (15 pts) Calculate the following Clebsch-Gordan coefficients:
(a) $\langle 1,1 ;-1,1 \mid 2,0\rangle$
(b) $\langle 1,1 ; 1,-1 \mid 2,0\rangle$
(c) $\langle 1,1 ; 0,0 \mid 2,0\rangle$
(d) $\langle 1,1 ;-1,1 \mid 1,0\rangle$
(e) $\langle 1,1 ; 1,-1 \mid 1,0\rangle$
(f) $\langle 1,1 ;-1,1 \mid 0,0\rangle$
(g) $\langle 1,1 ; 0,0 \mid 0,0\rangle$
4. (10 pts) A hydrogen atom is in a ${ }^{2} P_{3 / 2}$ state with the projection of the total angular momentum on the z -axis $m=-1 / 2$. What is the probability to find the electron with spin up (i.e. $m_{s}=+1 / 2$) ?
5. Reading assignment: Sakurai 3.8.
