Homework \#7

(due Wednesday, March 6, 2024)

1. (10 pts) Show that

$$
\begin{aligned}
& {\left[J_{ \pm}, T_{q}^{(k)}\right]=\hbar \sqrt{k(k+1)-q(q \pm 1)} T_{q \pm 1}^{(k)}} \\
& {\left[J_{z}, T_{q}^{(k)}\right]=\hbar q T_{q}^{(k)}}
\end{aligned}
$$

Hint: use the definition of the spherical tensor and the case of infinitesimal rotations, i.e. $D_{q^{\prime} q}^{(k)}=\left\langle k, q^{\prime}\right| 1-\frac{i}{\hbar} d \varphi \mathbf{J} \cdot \mathbf{n}|k, q\rangle$ as well as properties of the angular momentum operator.
2. (10 pts)
(a) Using appropriate spherical harmonics, calculate $\langle 2,0| Y_{1}^{0}|1,0\rangle$
(b) Using the result of (a) along with the Wigner-Eckart theorem, calculate the reduced matrix element $\langle 2|\left|\left|Y_{1} \|\right| 1\right\rangle$.
3. (20 pts) Sakurai 3.45.
4. (10 pts) Consider a system of three spin- $1 / 2$ particles, whose interaction is described by the following Hamiltonian:

$$
H=-A\left(\mathbf{S}_{1} \cdot \mathbf{S}_{3}+\mathbf{S}_{2} \cdot \mathbf{S}_{3}\right)
$$

Find the system's energy levels and their degeneracies.
4. Reading assignment: Sakurai 3.11.

