Phys 652 Winter 2024

Worksheet #13

Wednesday, March 6, 2024

Name

Question (5 pts):

From the 0^{th} and 1^{st} order expansion of $|n>_{\lambda}$, we found that

$$\langle n^{(0)} | n^{(0)} \rangle = 1, \langle n^{(0)} | n^{(1)} \rangle = \langle n^{(1)} | n^{(0)} \rangle = 0$$

From the 2nd order expansion of $|n\rangle_{\lambda}$ (i.e. $|n\rangle_{\lambda} = |n^{(0)}\rangle + \lambda |n^{(1)}\rangle + \lambda^2 |n^{(2)}\rangle$), find the conditions for $\langle n^{(2)}|n^{(0)}\rangle$, $\langle n^{(1)}|n^{(1)}\rangle$, at which the orthonormalization condition $_{\lambda}\langle n|n\rangle_{\lambda} = 1$ holds.