Worksheet \# 5

Friday, February 2, 2024

Name

Questions (5 pts):

As we discussed last time, for the matrices $R_{\mathbf{n}}$ representing geometrical rotations around an axis \mathbf{n} by a small angle ε the following relation is valid:
$R_{\mathrm{x}}(\varepsilon) R_{\mathrm{y}}(\varepsilon)-R_{\mathrm{y}}(\varepsilon) R_{\mathrm{x}}(\varepsilon)=R_{\mathrm{z}}\left(\varepsilon^{2}\right)-1$
Using this relation, as well as direct correspondence between $\mathrm{R}_{\mathbf{n}}$ and the QM rotation operator $\mathrm{D}(\mathbf{n}, \varphi)$ and the fact that for small angles ε the operator $\mathrm{D}(\mathbf{n}, \varepsilon)$ is:
$\mathrm{D}(\mathbf{n}, \varepsilon) \approx 1-(\mathrm{i} / \hbar)(\mathbf{J} \cdot \mathbf{n}) \varepsilon+(1 / 2)(\mathrm{i} / \hbar)^{2}((\mathbf{J} \cdot \mathbf{n}) \varepsilon)^{2}$,
derive the commutation relations for the angular momentum operators J_{i}.

