1. Two force vectors are applied to an object, \(\mathbf{F}_1 = (30, 45) \) and \(\mathbf{F}_2 = (45, 30) \), where the forces are measured in pounds.

 (a) Determine \(\|\mathbf{F}_1\| \) and \(\|\mathbf{F}_2\| \).

 (b) Find the resultant, or net, force vector \(\mathbf{F} \) acting on the object and determine \(\|\mathbf{F}\| \).

 (c) The force \(\mathbf{F} \) moves the object from the point \((1, 3)\) to \((4, 5)\), where the distance is measured in feet. Find the displacement vector \(\mathbf{D} \) of the object.

 (d) Determine the work done by the force \(\mathbf{F} \) in moving the object with displacement vector \(\mathbf{D} \).
2. A pilot wishes to fly with a bearing of 135° and a speed of 300 mph. There is currently a wind blowing from the south at 50 mph. What direction (bearing) and speed should the pilot adopt to accomplish this? I.e., given \mathbf{v} and \mathbf{w}, find \mathbf{p}.

3. Let $\mathbf{a} = \langle -3, 15 \rangle$ and $\mathbf{b} = \langle 12, -17 \rangle$. Determine each of the following.
 (a) The direction angle for \mathbf{a} if \mathbf{a} is in standard position.
 (b) $\mathbf{a} + \mathbf{b}$
 (c) $2\mathbf{a} - \mathbf{b}$
 (d) $\mathbf{a} \cdot \mathbf{b}$
 (e) The angle between \mathbf{a} and \mathbf{b}

4. Are the vectors $\mathbf{a} = \langle 5, 6 \rangle$ and $\mathbf{b} = \langle 10, 13 \rangle$ parallel, perpendicular, or neither? Hint: to do this you should determine the angle between the vectors...