MTH 112
Extra Examples

1. (Problem 8, Rockswold) Since \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \) and \(\frac{\pi}{3} \) is in the interval \([0, \pi]\), \(\cos^{-1}\left(\frac{1}{2}\right) = ? \).

Solution. By definition \(\cos^{-1}\left(\frac{1}{2}\right) \) is an angle, let’s call it \(\theta \), in the interval \([0, \pi]\) such that \(\cos(\theta) = \frac{1}{2} \). As the problem has already explained, that angle is \(\theta = \frac{\pi}{3} \). That is, \(\cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \).

FOLLOW UP QUESTION: Since \(\cos\left(\frac{5\pi}{3}\right) = \frac{1}{2} \), why isn’t it that case that \(\cos^{-1}\left(\frac{1}{2}\right) = \frac{5\pi}{3} \)?

Solution. There are lots of possibilities for values of \(\theta \) that will satisfy \(\cos(\theta) = \frac{1}{2} \). We have decided that the range of the function \(f(x) = \cos^{-1}(x) \) will be \([0, \pi]\). Therefore \(\cos^{-1}(x) \) is always going to be a number (an angle) in the interval \([0, \pi]\). \(\frac{5\pi}{3} \) is not in this interval. Therefore \(\cos^{-1}\left(\frac{1}{2}\right) \neq \frac{5\pi}{3} \). Above we found that \(\cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \).

2. (Problem 24, Rockswold) Evaluate \(\sin^{-1}\left(\sin\left(\frac{\pi}{4}\right)\right) \).

Solution. There are multiple ways that we can approach this problem. The first way is computationally. That is, first we compute \(\sin\left(\frac{\pi}{4}\right) \) and then we compute \(\sin^{-1} \) of our result.

\[
\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \quad \text{and} \quad \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}.
\]

The second way that we can approach this problem is conceptually. Let \(x \) represent \(\sin\left(\frac{\pi}{4}\right) \). That is, \(\sin\left(\frac{\pi}{4}\right) = x \). Thus \(-1 \leq x \leq 1\). We of course know that \(x = \frac{\sqrt{2}}{2} \). Now \(\sin^{-1}(x) \) is defined to be a number (an angle), say \(\theta \), in the interval \([\frac{-\pi}{2}, \frac{\pi}{2}]\) such that \(\sin(\theta) = x \). But we’ve already been shown that angle in this problem, it is \(\theta = \frac{\pi}{4} \). That is, \(\sin^{-1}(\sin\left(\frac{\pi}{4}\right)) = \frac{\pi}{4} \).

FOLLOW UP QUESTION. Why is it then not the case that \(\sin^{-1}(\sin\left(\frac{3\pi}{4}\right)) = \frac{3\pi}{2} \)?

Solution. \(\sin^{-1}(x) \) is defined to be the number \(y \) in the interval \([\frac{-\pi}{2}, \frac{\pi}{2}]\) such that \(\sin(y) = x \). \(\frac{3\pi}{2} \) is not in this interval, so \(\sin^{-1}(\sin\left(\frac{3\pi}{2}\right)) \) could not possibly be \(\frac{3\pi}{2} \). Instead we attack this problem computationally and see \(\sin\left(\frac{3\pi}{2}\right) = 1 \), so \(\sin^{-1}(\sin\left(\frac{3\pi}{2}\right)) = \sin^{-1}(1) \). Since \(\sin\left(\frac{\pi}{2}\right) = 1 \) and \(\frac{\pi}{2} \) is in the interval \([\frac{-\pi}{2}, \frac{\pi}{2}]\), we conclude that \(\sin^{-1}(1) = \frac{\pi}{2} \).
\[\frac{\pi}{2}. \text{ That is, } \sin^{-1}(\sin(\frac{3\pi}{2})) = \frac{\pi}{2}. \]

FOLLOW UP QUESTION 2. What about evaluating \(\sin(\sin^{-1}(\frac{1}{2})) \)?

Solution. Again, we can approach this problem computationally or conceptually. Conceptually we see that \(\sin^{-1}(\frac{1}{2}) \) is defined to be the number \(y \) in the interval \([-\frac{\pi}{2}, \frac{\pi}{2}]\) such that \(\sin(y) = \frac{1}{2} \). Thus \(\sin(\sin^{-1}(\frac{1}{2})) \) must evaluate to be \(\frac{1}{2} \).

Computationally, we have \(\sin^{-1}(\frac{1}{2}) = \frac{\pi}{6} \). Therefore \(\sin(\sin^{-1}(\frac{1}{2})) = \sin(\frac{\pi}{6}) = \frac{1}{2} \).

These two problems illustrate the property that we discussed in class:

\[\sin^{-1}(\sin x) = x \text{ if (and only if) } -\frac{\pi}{2} \leq x \leq \frac{\pi}{2}, \]

and

\[\sin(\sin^{-1} x) = x \text{ as long as } \sin^{-1}(x) \text{ is defined (as long as } -1 \leq x \leq 1). \]

FOLLOW UP QUESTION 3. In this problem we claimed that \(\sin^{-1}(\frac{1}{2}) = \frac{\pi}{6} \). How did we calculate this since a calculator only gives a decimal answer?

Solution. The answer is a unit circle. I am looking for the angle \(\theta \) in the interval \([-\frac{\pi}{2}, \frac{\pi}{2}]\) such that \(\sin(\theta) = \frac{1}{2} \). We see that the (only) angle that makes this happen is \(\frac{\pi}{6} \). If I wanted to determine \(\sin^{-1}(x) \) and \(x \) does not appear as the sin value of any angle on my unit circle then I would probably only be able to get an approximate (decimal) answer from my calculator. The exception would be if the problem somehow gave me the information I needed to calculate it exactly.