1. Suppose $\cot \theta > 0$ and $\cos \theta < 0$, which quadrant must θ be in?

2. Suppose $\sec \theta = -\frac{13}{12}$ and $\csc \theta < 0$. Determine the value of all six trig functions of θ.

3. Simplify $\sec(-\theta) \cot(-\theta) \sin(-\theta)$.

4. Verify each identity

 (a) $\cos \theta + \sin \theta)^2 + (\cos \theta - \sin \theta)^2 = 2$

 (b) $\sec(2x) = \frac{1}{2\cos^2 x - 1}$
5. Suppose θ is in quadrant 2 and $\theta_R = \frac{\pi}{3}$. Determine θ.

6. Find all solutions in the interval $[0^\circ, 360^\circ)$.

 (a) $\tan \theta = \sqrt{3}$

 (b) $\sin \theta = 1$

7. Find all solutions to $2 \sin^2 t - \sin t - 1 = 0$.

8. Determine $\sin \frac{\pi}{12}$ exactly using a half angle identity.

9. Determine $\sin \frac{\pi}{12}$ exactly using a difference identity.
10. Simplify \(\sin(2 \sin^{-1} x) \), where \(x > 0 \).

11. Suppose \(\cos \alpha = \frac{3}{5} \) and \(\cos \beta = \frac{12}{13} \) and both \(\alpha \) and \(\beta \) are in quadrant 1. Determine the following:

 (a) \(\sin(\alpha + \beta) \)

 (b) \(\cos(\alpha + \beta) \)

 (c) \(\tan(\alpha + \beta) \)

 (d) The quadrant containing \(\alpha + \beta \)

 (e) \(\sin(2\alpha) \)

 (f) \(\cos(2\alpha) \)

 (g) \(\tan(2\alpha) \)

 (h) The quadrant containing \(2\alpha \)