MTH 252 — Lab 9
Applications

1. Find the total mass of the atmosphere. Assume that the atmosphere extends to +∞ and that its density, \(\rho \), is a function of height, \(h \), in meters. In particular,

\[
\rho(h) = 1.28e^{-0.000124h} \text{ kg/m}^3.
\]

The radius of the earth is approximately 6370 km.

2. Answer one of the following.
 (a) Find the center of mass of an isosceles trapezoid with height \(H \) and bases \(B_1 \) and \(B_2 \).
 (b) Find the center of mass of a cone of height \(H \) and radius \(R \).

3. The soot produced by a garbage incinerator spreads out in a circular pattern. The depth, \(H(r) \), in millimeters, of the soot deposited each month at a distance \(r \) kilometers from the incinerator is given by \(H(r) = 0.115e^{-2r} \).
 (a) Write a definite integral giving the total volume of soot deposited within 5 kilometers of the incinerator each month.
 (b) Evaluate the integral you found in part (a), giving your answer in cubic meters.

4. A metal plate, with constant density \(2 \text{ gm/cm}^2 \), has a shape bounded by the two curves \(y = x^2 \) and \(y = \sqrt{x} \), with \(0 \leq x \leq 1 \), and \(x, y \) in cm.
 (a) Find the total mass of the plate.
 (b) Because of the symmetry of the plate about the line \(y = x \), we have \(\bar{x} = \bar{y} \). Sketch the plate, and decide, on the basis of the shape, whether \(\bar{x} \) is less than or greater than \(1/2 \).
 (c) Find \(\bar{x} \) and \(\bar{y} \).

5. Water is raised from a well 40 ft deep by a bucket attached to a rope. When the bucket is full, it weighs 30 lb. However, a leak in the bucket causes it to lose water at a rate of \(1/4 \text{ lb/ft} \) for each foot that the bucket is raised. Neglecting the weight of the rope, find the work done in raising the bucket to the top.

6. A water tank is in the shape of a right circular cone with height 18 ft and radius 12 ft at the top. If it is filled with water to a depth of 15 ft, find the work done in pumping all of the water out of a spigot 2 ft above the top of the tank. (The density of water is \(\delta = 62.4 \text{ lb/ft}^3 \).)

7. An underground tank filled with gasoline of density \(42 \text{ lb/ft}^3 \) is a hemisphere of radius 5 ft, as in the figure at the right. Use an integral to find the work to pump the gasoline over the top of the tank.