4. Let \(B_\lambda = \lambda B (\lambda - B)^{-1} \), \(\lambda > 0 \), be the operators described in Lemma 5.3 of our text.
 (a) Show that for each \(\lambda > 0 \) and \(\mu > 0 \) we have \(\lambda - B_\mu \) is onto the space \(H \).
 (b) Show that each \(\lambda (\lambda - B_\mu)^{-1} \) is a contraction. Thus, in the Hilbert space \(H \), the
 operators \(-B_\mu, \mu > 0 \), are m-accretive.

5. If \(\{S(t) : t \geq 0\} \) is a contraction semigroup with generator \(B \), show that \(\{e^{-\lambda} S(t) : t \geq 0\} \)
 is a contraction semigroup for \(\lambda > 0 \), and that its generator is \(B - \lambda \).

6. Let \(B : D(B) \to H \) be linear and suppose \((\lambda - B)^{-1} \) is continuous.
 (a) Show \(B(\lambda - B)^{-1} = (\lambda - B)^{-1}B \) on \(D(B) \).
 (b) If \(C : D(C) \to H \) is linear and closed, with \(D(B) \subset D(C) \), show that \(C(\lambda - B)^{-1} \) is
 closed. Note: It then follows from the closed graph theorem that \(C(\lambda - B)^{-1} \) is continuous.