1. Abstract Cauchy Problem

Suppose that V is Hilbert space and that $\mathcal{A}: V \to V'$ is a linear monotone operator, that is,

$$\mathcal{A}u(u) \geq 0$$
 for all $u \in V$.

Let $\mathcal{B}: V \to V'$ be continuous, linear, symmetric and strictly positive. Then $\mathcal{B}(\cdot)(\cdot)$ is a (continuous) scalar product on V, and we denote the space V with the corresponding norm $(\mathcal{B}(\cdot)(\cdot))^{1/2}$ by W_b . Then the imbedding $V \hookrightarrow W_b$ is continuous, we have $W_b' \subset V'$, and the injection is continuous. The dual W_b' is a Hilbert space, and we have

$$f(u) = (f, \mathcal{B}u)_{W'_b}, \quad f \in W'_b, u \in V.$$

Define the operator $\mathbb{A}: \mathrm{Dom}(\mathbb{A}) \to W_b'$ with domain $\mathrm{Dom}(\mathbb{A}) \subset W_b'$ by

$$\mathbb{A}(v) = f \iff \text{ for some } u \in V, \ \mathcal{B}u = v \text{ and } f = \mathcal{A}(u).$$

Then for any such pair, $[v, f] \in \mathbb{A}$ we have

$$(f, v)_{W_h'} = f(u) ,$$

and since \mathcal{A} is monotone, it follows that \mathbb{A} is W_b' -accretive.

Remark 1.1. If we replace W_b by its completion, all the above holds for the continuous extension of \mathcal{B} , and moreover $\mathcal{B}: W_b \to W_b'$ is the Riesz map. We also see that \mathbb{A} is just the composition $\mathcal{A} \circ \mathcal{B}^{-1}$ with range restricted to W_b' .

The equation $v + \mathbb{A}(v) = f$ in W'_b is equivalent to

$$u \in V : \mathcal{B}u = v, f - v = \mathcal{A}(u),$$

that is, $u \in V$: $\mathcal{A}(u) + B(u) = f \in W_b'$, so $\operatorname{Rg}(I + \mathbb{A}) = \operatorname{Rg}(\mathcal{B} + \mathcal{A}) \cap W_b' \subset V'$. This shows that

Lemma 1.1. A is m-accretive on W'_b if $Rg(\mathcal{B} + \mathcal{A}) \supset W'_b$.

From the semigroup generation theorem, we obtain the following.

Theorem 1.2. If $u_0 \in V$ with $\mathcal{A}(u_0) \in W_b'$, then there exists a unique function $u:[0,\infty) \to V$ with $\mathcal{B}u \in C^1([0,\infty);W_b')$ and

(1a)
$$\frac{d}{dt}\mathcal{B}u(t) + \mathcal{A}(u(t)) = 0 \text{ for all } t \ge 0,$$

(1b)
$$\mathcal{B}u(0) = \mathcal{B}u_0 \text{ in } W_b'$$

Exercise 1. Let $V = \{ w \in H^1(0, \ell) : w(0) = 0 \}$, and set

$$\mathcal{A}u(v) = \int_0^\ell \partial u(x) \, \partial v(x) \, dx \,, \qquad u, \ v \in V$$

Define the operator \mathcal{B} by

$$\mathcal{B}u(v) = \int_0^\ell \rho(x)u(x) \, v(x) \, dx \,, \qquad u, \ v \in V \,,$$

where the function $\rho(\cdot) \in L^{\infty}(0,\ell)$ satisfies $\rho(x) > 0$ a.e. in $(0,\ell)$.

Show that \mathcal{B} is continuous on V. Characterize each of W_b and W_b' . State which initial-boundary-value problem has been solved by Theorem 1.2, and verify your claim.

Exercise 2. Repeat Exercise 1 with the operator \mathcal{B} replaced by

$$\mathcal{B}u(v) = \int_0^{\ell} \rho(x)u(x) \, v(x) \, dx + \rho_0 u(\ell) \, v(\ell) \,, \qquad u, \ v \in V \,,$$

where $\rho_0 > 0$ is given.

Exercise 3. Repeat Exercise 1 with the operator \mathcal{B} replaced by

$$\mathcal{B}u(v) = \int_0^\ell (u(x) v(x) + k \, \partial u(x) \, \partial v(x)) \, dx, \qquad u, \ v \in V,$$

where k > 0 is given.