We shall develop a representation of the solution of the initial-value problem

(1a)
$$u_t(x,t) = u_{xx}(x,t), \quad -\infty < x < +\infty, \quad t > 0,$$

(1b)
$$u(x,0) = u_0(x)$$
.

Note that if U(x,t) is a solution of (1a), then so also is the translate U(x-y,t) for any fixed $y \in \mathbb{R}$ as well as the linear combinations $\sum_j U(x-y_j,t)u_0(y_j)$ or even the integral $\int U(x-y,t)u_0(y)\,dy$. These remarks suggest that we should try first to find a solution K(x,t) of the initial-value problem with the initial value $K(\cdot,0)=\delta$. (Then the last integral formally gives the initial condition (1b).) To do so, we shall solve the problem for a solution U(x,t) with the initial condition U(x,0)=H(x), where $H(\cdot)$ is the Heaviside function. Then we can compute $K(x,t)=\frac{\partial}{\partial x}U(x,t)$, since the derivative of a solution of (1a) is also a solution.

Note that if u(x,t) is a solution of the initial-value problem (1) with $u_0(x) = H(x)$, then so is $u(ax, a^2t)$ for any number a > 0, since $H(\cdot)$ is invariant under dilation. The uniqueness of a solution suggests that $u(\cdot, \cdot)$ has the form

$$U(x,t) = g(s), \quad s = \frac{x}{\sqrt{t}}, \quad t > 0.$$

Substituting this into (1a), we obtain the equivalent form

$$g''(s) + \frac{1}{2}s g'(s) = 0,$$

so we find that

$$g(s) = c_1 \int e^{-\frac{s^2}{4}} ds + c_2 ,$$

and the corresponding solutions of the equation (1a) are given by

$$U(x,t) = c_1 \int_0^{\frac{x}{\sqrt{t}}} e^{-\frac{s^2}{4}} ds + c_2.$$

In order to get the initial condition U(x,0) = H(x), we need

$$x > 0:$$
 $1 = c_1 \sqrt{\pi} + c_2,$
 $x < 0:$ $0 = -c_1 \sqrt{\pi} + c_2,$

so we have $c_1 = \frac{1}{2\sqrt{\pi}}$ and $c_2 = \frac{1}{2}$. That is, we obtain the solution of the problem in the form

$$U(x,t) = \frac{1}{2\sqrt{\pi}} \int_0^{\frac{x}{\sqrt{t}}} e^{-\frac{s^2}{4}} ds + \frac{1}{2}.$$

We then obtain the desired solution with initial condition δ from the derivative

$$K(x,t) = U_x(x,t) = \frac{1}{2\sqrt{\pi t}}e^{-\frac{x^2}{4t}}.$$

Finally, we calculate

$$u(x,t) = \int_{-\infty}^{\infty} K(x - y, t) u_0(y) dy$$

= $-\int_{-\infty}^{\infty} \frac{\partial}{\partial y} U(x - y, t) u_0(y) dy = \int_{-\infty}^{\infty} U(x - y, t) u'_0(y) dy$,

and so we obtain the initial value

$$u(x,0) = \int_{-\infty}^{\infty} H(x-y) u_0'(y) dy = \int_{-\infty}^{x} u_0'(y) dy = u_0(x).$$

 $E ext{-}mail\ address: show@math.oregonstate.edu}$