1. Abstract Cauchy Problem

Suppose that V is Hilbert space and that $\mathcal{A} : V \to V'$ is a linear monotone operator, that is,
$$\mathcal{A}u(u) \geq 0 \text{ for all } u \in V.$$Let $\mathcal{B} : V \to V'$ be continuous, linear, symmetric and strictly positive. Then $\mathcal{B}(\cdot)(\cdot)$ is a (continuous) scalar product on V, and we denote the space V with the corresponding norm $(\mathcal{B}(\cdot)(\cdot))^{1/2}$ by W. Then the imbedding $V \hookrightarrow W$ is continuous, we have $W \subset V'$, and the injection is continuous. The dual W^* is a Hilbert space, and we have
$$f(u) = (f, Bu)_{W^*}, \quad f \in W, u \in V.$$Define the operator $\mathcal{A} : \text{Dom}(\mathcal{A}) \to W'$ with domain $\text{Dom}(\mathcal{A}) \subset W'$ by
$$\mathcal{A}(v) = f \iff \text{for some } u \in V, \, Bu = v \text{ and } f = \mathcal{A}(u).$$Then for any such pair, $[v, f] \in \mathcal{A}$ we have
$$(f, v)_{W'} = f(u),$$and since \mathcal{A} is monotone, it follows that \mathcal{A} is W^*-accretive.

Remark 1.1. If we replace W by its completion, all the above holds for the continuous extension of \mathcal{B}, and moreover $\mathcal{B} : W \to W'$ is the Riesz map. We also see that \mathcal{A} is just the composition $\mathcal{A} \circ \mathcal{B}^{-1}$ with range restricted to W'.

The equation $v + \mathcal{A}(v) = f$ in W is equivalent to
$$u \in V : \quad Bu = v, \quad f - v = \mathcal{A}(u),$$that is, $u \in V : \quad \mathcal{A}(u) + B(u) = f \in W'$, so $\text{Rg}(I + \mathcal{A}) = \text{Rg}(\mathcal{B} + \mathcal{A}) \cap W'. This shows that

Lemma 1.1. \mathcal{A} is m-accretive on W' if $\text{Rg}(\mathcal{B} + \mathcal{A}) \subset W'$.

From the semigroup generation theorem, we obtain the following.

Theorem 1.2. If $u_0 \in V$ with $\mathcal{A}(u_0) \in W'$, then there exists a unique function $u : [0, \infty) \to V$ with $Bu \in C^1([0, \infty); W)$ and

| (1a) | $\frac{d}{dt}Bu(t) + \mathcal{A}(u(t)) = 0$ for all $t \geq 0,$ |
| (1b) | $Bu(0) = Bu_0$ in W'. |

Exercise 1. Let $V = \{w \in H^1(0, \ell) : \ w(0) = 0\}$, and set
$$\mathcal{A}u(v) = \int_0^\ell \partial u(x) \partial v(x) \, dx, \quad u, \ v \in V$$Define the operator \mathcal{B} by
$$\mathcal{B}u(v) = \int_0^\ell \rho(x)u(x) v(x) \, dx, \quad u, \ v \in V,$$where the function $\rho(\cdot) \in L^\infty(0, \ell)$ satisfies $\rho(x) > 0$ a.e. in $(0, \ell).$
Show that \mathcal{B} is continuous on V. Characterize each of W_b and W_b'. State which initial-boundary-value problem has been solved by Theorem 1.2, and verify your claim.

Exercise 2. Repeat Exercise 1 with the operator \mathcal{B} replaced by

$$\mathcal{B} u(v) = \int_0^\ell \rho(x) u(x) v(x) \, dx + \rho(u(\ell)) v(\ell), \quad u, \, v \in V,$$

where $\rho_0 > 0$ is given.

Exercise 3. Repeat Exercise 1 with the operator \mathcal{B} replaced by

$$\mathcal{B} u(v) = \int_0^\ell (u(x) v(x) + k \partial u(x) \partial v(x)) \, dx, \quad u, \, v \in V,$$

where $k > 0$ is given.

1.1. The Complementary Form. Define \mathcal{A} by

$$\mathcal{A}(v) = f \iff \text{for some } u \in V, \, \mathcal{B} u = f \text{ and } v = \mathcal{A}(u).$$

Then for any such pair, $[v, f] \in \mathcal{A}$ we have

$$(f, v)_{W_b'} = v(u) = \mathcal{A} u(u),$$

so if \mathcal{A} is monotone, then \mathcal{A} is W_b'-accractive.

The equation $v + \mathcal{A}(v) = f$ in W_b' is equivalent to

$$u \in V: \, v + \mathcal{B} u = f, \, v = \mathcal{A}(u),$$

so $\text{Rg}(I + \mathcal{A}) = \text{Rg}(\mathcal{B} + \mathcal{A}) \cap W_b' \subset V'$. This shows that

Lemma 1.3. \mathcal{A} is m-accractive on W_b' if $\text{Rg}(\mathcal{B} + \mathcal{A}) \subset W_b'$.

Theorem 1.4. If $u_0 \in V$ and $v_0 = \mathcal{A}(u_0) \cap W_b'$, then there exists a unique function $u : [0, \infty) \to V$ with $\mathcal{B} u \in C([0, \infty); W_b')$ and $\mathcal{A}(u(\cdot)) \in C^1([0, \infty); W_b')$ for which

(2a) \quad \frac{d}{dt} \mathcal{A}(u(t)) + \mathcal{B}(u(t)) = 0 \text{ for all } t \geq 0,

(2b) \quad \mathcal{A}(u(0)) = v_0 \text{ in } W_b'.

Remark 1.2. Note that the roles of \mathcal{A} and \mathcal{B} have been reversed. The possibly unsymmetric operator now appears under the time derivative.

1.2. The Strong Form. Let $u : [0, \infty) \to V$ with $\mathcal{B} u \in C([0, \infty); W_b')$ and $\mathcal{A}(u(\cdot)) \in C^1([0, \infty); W_b')$ be a pair as above for which

$$\frac{d}{dt} \mathcal{A}(u(t)) + \mathcal{B}(u(t)) = 0, \text{ for all } t \geq 0,$$

$$\mathcal{A}(u(0)) = v_0 \text{ in } W_b'.$$

Assume that $\mathcal{B} : W_b \to W_b'$ is surjective. (This can be accomplished by completing the scalar product space W_b and extending \mathcal{B} by continuity.) Choose $w(t) \in W_b : \, \mathcal{B}(w(t)) =$
\[\int_0^t B(u(s)) \, ds - v_0. \] Then we have \(w \in C^1([0, \infty); W_b) \)

\[\frac{d}{dt} B(w(t)) = B(u(t)) \]

\[\mathcal{A}(u(t)) + B(w(t)) = 0 \text{ for all } t \geq 0, \]

\[\mathcal{A}(u(0)) = v_0. \]

In particular, since \(B \) is injective, we have \(u(t) = w'(t) \in V \) and

\[\mathcal{A}(w'(t)) + B(w(t)) = 0. \]

2. The Wave Equation

We want to resolve an appropriate initial-value problem for the wave equation

\[Cu''(t) + Bu'(t) + Au(t) = 0, \]

where \(A, B, C \) are given operators in \(\mathcal{L}(V, V') \). As above we write this as a system

\[A u' - A v = 0, \]

\[C v' + A u + B v = 0. \]

Thus we see that the wave equation can be written in the form (1a) as

\[\frac{d}{dt} \begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} + \begin{pmatrix} 0 & -A \\ A & B \end{pmatrix} \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \]

The preceding suggests the following approach. Suppose that \(V \) is Hilbert space and that \(B : V \to V' \) is a linear monotone operator, that is,

\[Bu(u) \geq 0 \text{ for all } u \in V. \]

Let \(A, C \in \mathcal{L}(V, V') \) both be continuous, linear, symmetric and strictly positive, so they determine as before a pair of scalar products on \(V \), and we denote the completions of the space \(V \) with the corresponding norms by \(W_a \) and \(W_c \), respectively. Then the imbeddings \(V \hookrightarrow W_a \) and \(V \hookrightarrow W_c \) are continuous, and we have \(W_a' \subset V', W_c' \subset V' \) with continuous injections. We define the matrix operators

\[\mathbb{B} = \begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix}, \quad \mathbb{A} = \begin{pmatrix} 0 & -A \\ A & B \end{pmatrix} \]

on the product space \(\mathbb{V} = V \times V \) into its dual \(\mathbb{V}' = V' \times V' \). Then the continuous, linear, symmetric and strictly positive operator \(\mathbb{B} \) is a scalar product on \(\mathbb{V} \) for which the completion is the product space \(W_a \times W_c \), and the above is in the form of (1a), and so Theorem 1.2 applies.

Let’s check hypotheses. First, \(\mathbb{A} : \mathbb{V} \to \mathbb{V}' \) is monotone, since \(B : V \to V' \) is monotone. Next, the range condition is satisfied if we can always solve

\[\lambda \mathbb{B} u + \mathbb{A} u = f = [f_a, f_c] \in W_a' \times W_c' \]

for \(u = [u, v] \), that is,

\[\lambda \begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} 0 & -A \\ A & B \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} f_a \\ f_c \end{pmatrix}. \]
This system is equivalent to the single equation
\[\lambda^2 C \nu + \lambda B \nu + \mathcal{A} \nu = \lambda f_a - f_a, \]
and a sufficient condition for this is that \(\text{Rg}(\lambda^2 C + \lambda B + \mathcal{A}) \supset V'. \)

Remark 2.1. A sufficient condition for this range condition is that \(\mathcal{A} \) be \(V \)-elliptic, and in that case we have \(W_a = V. \)

The first component, \(u(\cdot) \), satisfies \(u \in C^1([0, \infty), W_a) \cap C^2([0, \infty), W_c) \) and
\[Cu''(t) + Bu'(t) + \mathcal{A}u(t) = 0 \text{ in } W_c'. \]
The second component, \(v(\cdot) \), satisfies \(v \in C^1([0, \infty), W_c) \) with \(Cu'(\cdot) + Bu(\cdot) \in C^1([0, \infty), W_a' \) and
\[(Cu'(t) + Bu(t))' + \mathcal{A}v(t) = 0 \text{ in } W_a'. \]
Note that we usually have \(W_a \subset W_c \), and then (3) is stronger than (4).