1. Abstract Cauchy Problem

Suppose that V is Hilbert space and that $\mathcal{A}: V \to V'$ is a linear monotone operator, that is,

$$\mathcal{A}u(u) \geq 0$$
 for all $u \in V$.

Let $\mathcal{B}: V \to V'$ be continuous, linear, symmetric and strictly positive. Then $\mathcal{B}(\cdot)(\cdot)$ is a (continuous) scalar product on V, and we denote the space V with the corresponding norm $(\mathcal{B}(\cdot)(\cdot))^{1/2}$ by W_b . Then the imbedding $V \hookrightarrow W_b$ is continuous, we have $W_b' \subset V'$, and the injection is continuous. The dual W_b' is a Hilbert space, and we have

$$f(u) = (f, \mathcal{B}u)_{W'_b}, \quad f \in W'_b, u \in V.$$

Define the operator $\mathbb{A}: \mathrm{Dom}(\mathbb{A}) \to W_b'$ with domain $\mathrm{Dom}(\mathbb{A}) \subset W_b'$ by

$$\mathbb{A}(v) = f \iff \text{ for some } u \in V, \ \mathcal{B}u = v \text{ and } f = \mathcal{A}(u).$$

Then for any such pair, $[v, f] \in \mathbb{A}$ we have

$$(f,v)_{W_h'} = f(u) ,$$

and since \mathcal{A} is monotone, it follows that \mathbb{A} is W_b' -accretive.

Remark 1.1. If we replace W_b by its completion, all the above holds for the continuous extension of \mathcal{B} , and moreover $\mathcal{B}: W_b \to W_b'$ is the Riesz map. We also see that \mathbb{A} is just the composition $\mathcal{A} \circ \mathcal{B}^{-1}$ with range restricted to W_b' .

The equation $v + \mathbb{A}(v) = f$ in W'_b is equivalent to

$$u \in V : \mathcal{B}u = v, f - v = \mathcal{A}(u),$$

that is, $u \in V$: $\mathcal{A}(u) + B(u) = f \in W_b'$, so $\operatorname{Rg}(I + \mathbb{A}) = \operatorname{Rg}(\mathcal{B} + \mathcal{A}) \cap W_b' \subset V'$. This shows that

Lemma 1.1. A is m-accretive on W'_b if $Rg(\mathcal{B} + \mathcal{A}) \supset W'_b$.

From the semigroup generation theorem, we obtain the following.

Theorem 1.2. If $u_0 \in V$ with $\mathcal{A}(u_0) \in W_b'$, then there exists a unique function $u:[0,\infty) \to V$ with $\mathcal{B}u \in C^1([0,\infty);W_b')$ and

(1a)
$$\frac{d}{dt}\mathcal{B}u(t) + \mathcal{A}(u(t)) = 0 \text{ for all } t \ge 0,$$

(1b)
$$\mathcal{B}u(0) = \mathcal{B}u_0 \text{ in } W_b'$$

Exercise 1. Let $V = \{ w \in H^1(0, \ell) : w(0) = 0 \}$, and set

$$\mathcal{A}u(v) = \int_0^\ell \partial u(x) \, \partial v(x) \, dx \,, \qquad u, \ v \in V$$

Define the operator \mathcal{B} by

$$\mathcal{B}u(v) = \int_0^\ell \rho(x)u(x) \, v(x) \, dx \,, \qquad u, \ v \in V \,,$$

where the function $\rho(\cdot) \in L^{\infty}(0,\ell)$ satisfies $\rho(x) > 0$ a.e. in $(0,\ell)$.

Show that \mathcal{B} is continuous on V. Characterize each of W_b and W'_b . State which initial-boundary-value problem has been solved by Theorem 1.2, and verify your claim.

Exercise 2. Repeat Exercise 1 with the operator \mathcal{B} replaced by

$$\mathcal{B}u(v) = \int_0^\ell \rho(x)u(x) v(x) dx + \rho_0 u(\ell) v(\ell), \quad u, \ v \in V,$$

where $\rho_0 > 0$ is given.

Exercise 3. Repeat Exercise 1 with the operator \mathcal{B} replaced by

$$\mathcal{B}u(v) = \int_0^\ell (u(x) v(x) + k \, \partial u(x) \, \partial v(x)) \, dx, \qquad u, \ v \in V,$$

where k > 0 is given.

1.1. The Complementary Form. Define \mathbb{A} by

$$\mathbb{A}(v) = f \iff \text{ for some } u \in V, \ \mathcal{B}u = f \text{ and } v = \mathcal{A}(u).$$

Then for any such pair, $[v, f] \in \mathbb{A}$ we have

$$(f, v)_{W'_b} = v(u) = \mathcal{A}u(u) ,$$

so if \mathcal{A} is monotone, then \mathbb{A} is W'_{h} -accretive.

The equation $v + \mathbb{A}(v) = f$ in W'_b is equivalent to

$$u \in V : v + \mathcal{B}u = f, v = \mathcal{A}(u),$$

so $\operatorname{Rg}(I+\mathbb{A}) = \operatorname{Rg}(\mathcal{B}+\mathcal{A}) \cap W_b' \subset V'$. This shows that

Lemma 1.3. A is m-accretive on W'_b if $Rg(\mathcal{B} + \mathcal{A}) \supset W'_b$.

Theorem 1.4. If $u_0 \in V$ and $v_0 = \mathcal{A}(u_0) \cap W_b'$, then there exists a unique function $u: [0, \infty) \to V$ with $\mathcal{B}u \in C([0, \infty); W_b')$ and $\mathcal{A}(u(\cdot)) \in C^1([0, \infty); W_b')$ for which

(2a)
$$\frac{d}{dt}\mathcal{A}(u(t)) + \mathcal{B}(u(t)) = 0 \text{ for all } t \ge 0,$$

(2b)
$$\mathcal{A}(u(0)) = v_0 \text{ in } W_b'.$$

Remark 1.2. Note that the roles of A and B have been reversed. The possibly unsymmetric operator now appears under the time derivative.

1.2. The Strong Form. Let $u:[0,\infty)\to V$ with $\mathcal{B}u\in C([0,\infty);W_b')$ and $\mathcal{A}(u(\cdot))\in C^1([0,\infty);W_b')$ be a pair as above for which

$$\frac{d}{dt}\mathcal{A}(u(t)) + \mathcal{B}(u(t)) = 0, \text{ for all } t \ge 0,$$
$$\mathcal{A}(u(0)) = v_0 \text{ in } W_b'.$$

Assume that $\mathcal{B}: W_b \to W_b'$ is *surjective*. (This can be accomplished by completing the scalar product space W_b and extending \mathcal{B} by continuity.) Choose $w(t) \in W_b$: $\mathcal{B}(w(t)) =$

 $\int_0^t \mathcal{B}(u(s)) ds - v_0$. Then we have $w \in C^1([0,\infty); W_b)$

$$\frac{d}{dt}\mathcal{B}(w(t)) = \mathcal{B}(u(t))$$

$$\mathcal{A}(u(t)) + \mathcal{B}(w(t)) = 0 \text{ for all } t \ge 0,$$

$$\mathcal{A}(u(0)) = v_0.$$

In particular, since \mathcal{B} is *injective*, we have $u(t) = w'(t) \in V$ and

$$\mathcal{A}(w'(t)) + \mathcal{B}(w(t)) = 0.$$

2. The Wave Equation

We want to resolve an appropriate initial-value problem for the wave equation

$$Cu''(t) + \mathcal{B}u'(t) + \mathcal{A}u(t) = 0,$$

where \mathcal{A} , \mathcal{B} , \mathcal{C} are given operators in $\mathcal{L}(V,V')$. As above we write this as a system

$$Au' - Av = 0,$$

$$Cv' + Au + Bv = 0.$$

Thus we see that the wave equation can be written in the form (1a) as

$$\frac{d}{dt} \begin{pmatrix} \mathcal{A} & 0 \\ 0 & \mathcal{C} \end{pmatrix} \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} + \begin{pmatrix} 0 & -\mathcal{A} \\ \mathcal{A} & \mathcal{B} \end{pmatrix} \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The preceding suggests the following approach. Suppose that V is Hilbert space and that $\mathcal{B}: V \to V'$ is a linear monotone operator, that is,

$$\mathcal{B}u(u) \geq 0$$
 for all $u \in V$.

Let \mathcal{A} , $\mathcal{C} \in \mathcal{L}(V, V')$ both be continuous, linear, symmetric and strictly positive, so they determine as before a pair of scalar products on V, and we denote the completions of the space V with the corresponding norms by W_a and W_c , respectively. Then the imbeddings $V \hookrightarrow W_a$ and $V \hookrightarrow W_c$ are continuous, and we have $W'_a \subset V'$, $W'_c \subset V'$ with continuous injections. We define the matrix operators

$$\mathbb{B} = \begin{pmatrix} \mathcal{A} & 0 \\ 0 & \mathcal{C} \end{pmatrix}, \qquad \mathbb{A} = \begin{pmatrix} 0 & -\mathcal{A} \\ \mathcal{A} & \mathcal{B} \end{pmatrix}$$

on the product space $\mathbb{V} = V \times V$ into its dual $\mathbb{V}' = V' \times V'$. Then the continuous, linear, symmetric and strictly positive operator \mathbb{B} is a scalar product on \mathbb{V} for which the completion is the product space $W_a \times W_c$, and the above is in the form of (1a), and so Theorem 1.2 applies.

Let's check hypotheses. First, $\mathbb{A}: \mathbb{V} \to \mathbb{V}'$ is monotone, since $\mathcal{B}: V \to V'$ is monotone. Next, the range condition is satisfied if we can always solve

$$\lambda \mathbb{B}\mathbf{u} + \mathbb{A}\mathbf{u} = \mathbf{f} = [f_a, f_c] \in W'_a \times W'_c$$

for $\mathbf{u} = [u, v]$, that is,

$$\lambda \begin{pmatrix} \mathcal{A} & 0 \\ 0 & \mathcal{C} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} 0 & -\mathcal{A} \\ \mathcal{A} & \mathcal{B} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} f_a \\ f_c \end{pmatrix}.$$

This system is equivalent to the single equation

$$\lambda^2 \mathcal{C} \mathbf{v} + \lambda \mathcal{B} \mathbf{v} + \mathcal{A} \mathbf{v} = \lambda f_c - f_a,$$

and a sufficient condition for this is that $Rg(\lambda^2 C + \lambda B + A) \supset V'$.

Remark 2.1. A sufficient condition for this range condition is that A be V-elliptic, and in that case we have $W_a = V$.

The first component, $u(\cdot)$, satisfies $u \in C^1([0,\infty), W_a) \cap C^2([0,\infty), W_c)$ and

(3)
$$Cu''(t) + \mathcal{B}u'(t) + \mathcal{A}u(t) = 0 \text{ in } W'_c.$$

The second component, $v(\cdot)$, satisfies $v \in C^1([0,\infty), W_c)$ with $Cv'(\cdot) + \mathcal{B}v(\cdot) \in C^1([0,\infty), W_a')$ and

(4)
$$(\mathcal{C}v'(t) + \mathcal{B}v(t))' + \mathcal{A}v(t) = 0 \text{ in } W'_a.$$

Note that we usually have $\mathcal{W}_a \subset \mathcal{W}_c$, and then (3) is *stronger* than (4).