Mechanical power output of bird flight

K. P. Dial†, A. A. Biewener‡, B. W. Tobalske* & D. R. Warrick*†

*Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
‡Department of Organismal Biology and Anatomy, University of Chicago, 1025 East 57 Street, Chicago, Illinois 60637, USA

Aerodynamic theory predicts that the power required for an animal to fly over a range of speeds is represented by a ‘U’-shaped curve, with the greatest power required at the slowest and fastest speeds, and minimum power at an intermediate speed1–4. Tests of these predictions, based on oxygen consumption measurements of metabolic power in birds5–11 and insects12, support a different interpretation, generating either flat or ‘J’-shaped power profiles, implying little additional demand between hovering and intermediate flight speeds5. However, respirometric techniques represent only an indirect assessment of the mechanical power requirements of flight and no previous avian study has investigated an animal’s full range of attainable level flight speeds. Here we present data from in vivo bone-strain measurements of...
pectoralis muscle force coupled with wing kinematics in black-billed magpies (Pica pica), which we use to calculate mechanical power directly. As these birds flew over their full range of speeds, we offer a complete profile of mechanical power output during level flapping flight for this species. Values of mechanical power output are statistically indistinguishable (that is, the power curve is flat) over most forward-flight speeds but are significantly higher during hovering and flight at very low speeds.

We flew birds in a variable-speed wind tunnel15,16 to measure the force generated by the dominant flight muscles by means of bone-strain recordings (Figs 1, 2a) and to determine muscle-fibre shortening from analysis of wing excursion (Fig. 2b). Changes in force plotted against changes in fibre length (Fig. 2c) show the net total work (area of ‘work loop’)17 of the pectoralis during a wingbeat cycle. By combining measurements of work per cycle (Fig. 2d) with wingbeat frequency (Fig. 2e), we calculated the mechanical power generated by the pectoralis muscles over a range of steady flight speeds. The results obtained from our measurements and analyses show that the mechanical power output (mean body-mass-specific power) is maximal during hovering (~21 W kg\(^{-1}\) at 0 m s\(^{-1}\)), decreases markedly with an increase in forward speed (~9 W kg\(^{-1}\) at 4 m s\(^{-1}\)), remains relatively constant over a broad range of faster flight speeds (4 to 12 m s\(^{-1}\)), and increases slightly during the maximum flight speed measured (~12 W kg\(^{-1}\) at 14 m s\(^{-1}\)) (Figs 2, 3). This pattern is borne out by the generally uniform measurements of force, fibre shortening and wingbeat frequency (Fig. 2a, b, e) that we observed over the intermediate speed range, and the maximum pectoralis force generation and fibre shortening during hovering. Correspondingly, the low variances observed at hovering and the highest flight speeds suggest that the bird was performing at or near to its performance limit. Comparable data to those shown here were obtained for the other two magpies.

Our measurements show that power output is maximal during hovering. Comparable levels of power output are not observed at the upper range of flying speeds. As hovering episodes are brief (1–4 s), we suggest that non-forward flapping flight in this species, as in other species, may involve anaerobic metabolism within the pectoralis. Similarly, sustainable flight at speeds greater than 14 m s\(^{-1}\) may not be possible because anaerobic metabolism cannot be sustained. Thus, the ‘shape’ of the power curve will be determined by the particular species’ available aerobic power. Birds that can sustain higher levels of mass-specific power output may be more likely to fly at very slow and fast speeds, exhibiting high induced power (slow) or high profile and parasite power (fast)14.

We suggest that the ‘L’-shaped power profile exhibited by magpies reflects the power required for birds of similar wing design and body
mass. However, the flight of other species of birds may not adhere to the ‘L’-shaped power curve that we describe for magpies. Hummingbirds, for example, have a unique shoulder arrangement that permits a wing movement to generate lift during both ‘upstroke’ and ‘downstroke’, perhaps allowing members of this group to hover using significantly less mass-specific mechanical power output than other small birds.14,19 Testing the generality of the profile of mechanical power output for magpies requires that similar measurements be made for a number of avian species having disparate wing structure. The fact that birds do not appear to adhere to a strict ‘U’-shaped power curve may help to explain why field observations20,21 frequently fail to agree with the theoretically predicted4 minimum power and maximum range flight velocities. Such theories do not adequately account for the ability of birds to dramatically change wing and tail presentation over a range of flight speeds25, permitting these animals to alter significantly the power requirements for flight.

Methods

Animals and strain measurements. Following training to fly in a variable-speed wind tunnel18,19 over nearly their full range of flight speeds (hovering to 14 m s-1), in vivo measurements of pectoralis muscle force were obtained from three black-billed magpies (mean mass, 174 g), based on bone-strain recordings made at the dorsal surface of the deltopectoral crest (DPC)15,22. The DPC serves as the insertion site for the pectoralis on the proximo–anterior surface of the humerus and as such the DPC’s dorsal surface experiences tensile strains as the pectoralis develops force. Our measurements assume that the power generated by the pectoralis muscles approximates the total mechanical power of the bird during flight23,24. However, this method may slightly underestimate the mechanical power requirements during very slow or hovering flight as it ignores the inertial power generated by the supracoracoideus and/or other upstroke muscles25. The strain gauge was attached perpendicularly to the bone’s shaft to avoid sensitivity to strains produced by bending and torsional loading of the humerus and associated with aerodynamic loading of the wing22. Following recovery from strain gauge and electrode implantation, birds were flown at speeds from 0 to 14 m s-1 at 2 m s-1 intervals. Birds were flown first at an intermediate speed, with subsequent speed trials conducted in a random order. DPC strains were then calibrated \textit{in situ} in fully anaesthetized animals, using a force transducer attached to the pectoralis muscle by a heavy nylon thread tied around the muscle’s aponeurotic insertion below the ventral surface of the DPC, so that cyclic forces could be applied in the direction of the muscle’s pull during flight. Force calibrations were made with the wings held at 60°, 30° and horizontal in order to obtain a mean calibration. After calibration, the strain gauge and electromyogram electrodes were removed and the birds allowed to recover.

Measurements of muscle fibre length. Changes in muscle fibre length as a function of flight speed were estimated from measurements of wingbeat amplitude by digitizing wingtip elevation (\(h\)) and wing length from lateral and dorsal views of high-speed film to calculate the wing excursion angle, \(\theta = \sin^{-1} (h/d)\), where \(b\) is the extended wing length at mid-downstroke. Pectoralis fibre length change (\(\Delta l\)) was then calculated as the arc of movement of the humerus at the DPC (\(\Delta l = \Delta \theta r\)), based on the measurements of wing excursion angle and the muscle’s moment arm (\(r\)) at the shoulder. This method assumes that excursions of the wing and humerus are uniformly maintained with respect to one another over the animal’s entire flight speed range. Relative changes in pectoralis fibre-length change were then calculated on the basis of the measurement of an average resting fibre length made directly from the pectoralis of one of the magpies used in the wind-tunnel trials.

Calculating work loops. Changes in force plotted against changes in fibre length provide the net total work of the pectoralis during a wingbeat cycle. Multiplying measurements of work per cycle by wingbeat frequency yields mechanical power generated by the muscles.
Impaired odour discrimination on desynchronization of odour-encoding neural assemblies

Mark Stopfer*, Seetha Bhagavan†‡, Brian H. Smith* & Gilles Laurent‡

* California Institute of Technology, Biology Division, 139-74, Pasadena, California 91125, USA
† Ohio State University, Department of Entomology, 1735 Neil Avenue, Columbus, Ohio 4210-1220, USA

Stimulus-evoked oscillatory synchronization of neural assemblies has been described in the olfactory1–3 and visual4–8 systems of several vertebrates and invertebrates. In locusts, information about odour identity is contained in the timing of action potentials in an oscillatory population response1–3, suggesting that oscillations may reflect a common reference for messages encoded in time. Although the stimulus-evoked oscillatory phenomenon is reliable, its roles in sensation, perception, memory formation and pattern recognition remain to be demonstrated—a task requiring a behavioural paradigm. Using honeybees, we now demonstrate that odour encoding involves, as it does in locusts, the oscillatory synchronization of assemblies of projection neurons and that this synchronization is also selectively abolished by picrotoxin, an antagonist of the GABA_A (γ-aminobutyric acid) receptor. By using a behaviourally relevant paradigm, we show that picrotoxin-induced desynchronization impairs the discrimination of modularly similar odorants, but not that of dissimilar odorants. It appears, therefore, that oscillatory synchronization of neuronal assemblies is functionally relevant, and essential for fine sensory discrimination. This suggests that oscillatory synchronization and the kind of temporal encoding it affords provide an additional dimension by which the brain could segment spatially overlapping stimulus representations.

Investigation of olfactory processing in the locust antennal lobe—a functional and morphological analogue of the vertebrate olfactory bulb—has indicated that both monomolecular and complex odours are represented there combinatorially by dynamical assemblies of projection neurons5,6–11. Each neuron in an odour-encoding assembly responds with an odour-specific temporal firing pattern consisting of periods of activity and silence5,6. Any two neurons responding to the same odour are usually co-active only during a fraction of the population response. The spikes of co-activated neurons are generally synchronized5,9,10 by the distributed action of GABAergic local neurons5,12, resulting in large-amplitude, 20–35 Hz local field potential (LFP) oscillations in their target area, the calyx of the mushroom body5. Each successive cycle of the odour-evoked oscillatory LFP can therefore be characterized by a co-active subset of projection neurons, and an odour is thus represented by a specific succession of synchronized assemblies5,10,11. This representation thus comprises three main features—the identity of the odour-activated neurons, the temporal evolution of the ensemble, and oscillatory synchronization—which is important for the animal for learning and recognition needs to be examined.

We have previously shown that picrotoxin (PCT) applied to the locust antennal lobe selectively blocks the fast inhibitory synapse between local and projection neurons and abolishes their oscillatory synchronization: this manipulation altered neither the response profiles of projection neurons to odours, nor their odour specificity12. We have now made use of this pharmacological tool to assess whether oscillatory synchronization plays a role in odour learning and discrimination, an experiment that requires a behavioural assay. We therefore used honeybees, which can be trained to extend their mouth parts (proboscis) in response to specific odours after a few associative forward pairings of these odours with a sucrose reinforcement (proboscis-extension (PE) conditioning)13–15. First, we demonstrated that odour representation in the honeybee includes the same three features as those discovered in the locust; second, we tested the importance of oscillatory synchronization for odour learning and discrimination.

Odours, but not air alone, puffed onto an antenna of a honeybee evoked bouts of ~30 Hz LFP oscillations in the calyx of the ipsilateral mushroom body (for example, mint; Fig 1a). These oscillations lasted for ~0.5–1 s in response to a 1-s-long odour puff. Sliding-window autocorrelations of these LFPs revealed the sustained periodic structure of the odour-evoked responses (Fig 1a). Simultaneous intracellular recordings from antennal lobe neurons showed that, as in locusts5, individual antennal lobe neurons responded selectively to certain odours with prominent membrane-potential oscillations (Figs 1b, 3a; n = 21 neurons in 16 animals) which are locked to the mushroom body LFP (Fig 1c, d). This representation is consistent with our findings in locusts, in which LFP oscillations in the mushroom body result, at least in part, from the coherent input.