| Final | Exam | |-------|------| |-------|------| Tuesday, March 15, 2022 Form A | Name | | | |------|--|--| | Name | | | You may use model kits but no other material with chemical information without instructor approval. Please do not use any electronic devices other than calculators. | hydrogen
1 | | | | | | | | | | | | | | | | | 350E 3 | helium
2
He | |---|--|-----------------------|---|--|---|---|---|---|---|--|--|---|--|---|---|---|--|---| | 1.0079 | | | | | | | | | | | | | | | | | | 4.0026 | | lithium
3 | beryllium
4 | | | | | | | | | | | | boron
5 | carbon
6 | nitrogen
7 | oxygen
8 | fluorine
9 | neon
10 | | | Be | | | | | | | | | | | | B | 0 | Ń | Ô | F | Ne | | Li | | | | | | | | | | | | | | C | | 1.00 | _ | | | 6.941
sodium | 9.0122
magnesium | | | | | | | | | | | | 10.811
aluminium | 12.011
silicon | 14.007
phosphorus | 15.999
sulfur | 18.998
chlorine | 20.180
argon | | 11 | 12 | | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na | Mg | | | | | | | | | | | | Al | Si | Р | S | CI | Ar | | 22,990 | 24,305 | | | | | | | | | | | | 26.982 | 28.086 | 30.974 | 32.065 | 35,453 | 39,948 | | potassium | calcium | | scandium | titanium | vanadium | chromium | manganese | iron | cobalt | nickel | copper | zinc | gallium | germanium | arsenic | selenium | bromine | krypton | | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | K | Ca | | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | | O G | | | | V | | IAILL | | | 141 | Cu | 411 | Ga | Ge | MS | JE | | | | 39.098 | 40.078 | | 44.956 | 47.867 | 50.942 | 51.996 | 54.938 | 55.845 | 58.933 | 58.693 | 63,546 | 65.39 | 69.723 | 72.61 | 74.922 | 78.96 | 79.904 | 83.80 | | 39,098
rubidium | 40.078
strontium | | 44.956
yttrium | 47.867
zirconium | 50.942
niobium | 51.996
molybdenum | 54.938
technetium | 55.845
ruthenium | 58,933
rhodium | 58,693
palladium | 63,546
silver | 65,39
cadmium | 69.723
indium | 72.61
tin | 74.922
antimony | 78.96
tellurium | 79.904
lodine | 83.80
xenon | | 39.098
rubidium
37 | 40.078
strontium
38 | | 44.956
yttrium
39 | 47.867
zirconium
40 | 50.942
niobium
41 | 51.996
molybdenum
42 | 54,938
technetium
43 | 55.845
ruthenium
44 | 58,933
rhodium
45 | 58.693
palladium
46 | 63,546
silver
47 | 65.39
cadmium
48 | 69.723
Indium
49 | 72.61
tin
50 | 74.922
antimony
51 | 78.96
tellurium
52 | 79.904 | 83.80
xenon
54 | | 39,098
rubidium | 40.078
strontium
38 | | 44.956
yttrium | 47.867
zirconium | 50.942
niobium | 51.996
molybdenum | 54.938
technetium | 55.845
ruthenium | 58,933
rhodium
45 | 58,693
palladium | 63,546
silver
47 | 65,39
cadmium | 69.723
indium | 72.61
tin | 74.922
antimony | 78.96
tellurium | 79.904
lodine | 83.80
xenon
54 | | 39.098
rubidium
37
Rb
85.468 | 40.078
strontium
38
Sr
87.62 | | 44.956
yttrium
39
Y
88.906 | 47,867
zirconium
40
Zr
91,224 | 50.942
niobium
41
Nb
92.906 | 51.996
molybdenum
42
Mo
95.94 | 54.938
technetium
43
TC
[98] | 55.845
ruthenium
44
Ru
101.07 | 58.933
rhodium
45
Rh
102.91 | 58.693
palladium
46
Pd
106.42 | 63,546
silver
47
Ag
107.87 | 65.39
cadmium
48
Cd
112.41 | 69.723
Indium
49
In | 72.61
tin
50
Sn | 74.922
antimony
51
Sb
121.76 | 78.96
tellurium
52
Te
127.60 | 79.904
lodine
53 | 83.80
xenon
54
Xe
131.29 | | 39,098
rubidium
37
Rb
85,468
caesium | 40.078
strontium
38
Sr
87.62
barium | £7.70 | 44.956
yttrium
39
Y
88.906
lutetium | 47.867 zirconium 40 Zr 91.224 hafnium | 50.942
niobium
41
Nb
92.906
tantalum | 51.996
molybdenum
42
Mo
95.94
tungsten | 54.938
technetium
43
TC
[98]
rhenium | ruthenium
44
Ru
101.07
osmium | 58.933
rhodium
45
Rh
102.91
iridium | palladium
46
Pd
106.42
platinum | 63,546
silver
47
Ag
107,87
gold | 65,39
cadmium
48
Cd
112,41
mercury | 69.723
Indium
49
In
114.82
thallium | 72.61
tin
50
Sn
118.71
lead | 74,922
antimony
51
Sb
121.76
bismuth | 78,96 tellurium 52 Te 127.60 polonium | 79.904
lodine
53
126.90
astatine | 83.80
xenon
54
Xe
131.29
radon | | 39.098
rubidium
37
Rb
85.468
caesium
55 | 40.078
strontium
38
Sr
87.62
barium
56 | 57-70 | 44.956
yttrium
39
Y
88.906
lutetium
71 | 47.867 zirconium 40 Zr 91.224 hafnium 72 | 50.942
niobium
41
Nb
92.906
tantalum
73 | 51.996
molybdenum
42
Mo
95.94
tungsten
74 | 54.938
technetium
43
TC
[98]
rhenium
75 | 55,845
ruthenium
44
Ru
101.07
osmium
76 | 58,933
rhodium
45
Rh
102,91
iridium
77 | 58.693 palladium 46 Pd 106.42 platinum 78 | 63.546
silver
47
Ag
107.87
gold
79 | 65,39
cadmium
48
Cd
112,41
mercury
80 | 69.723
indium
49
In
114.82
thallium
81 | 72.61
tin
50
Sn
118.71
lead
82 | 74.922
antlimony
51
Sb
121.76
bismuth
83 | 78.96
tellurium
52
Te
127.60
polonium
84 | 79.904
lodine
53
126.90
astatine
85 | 83.80
xenon
54
Xe
131.29
radon
86 | | 39.098
rubidium
37
Rb
85.468
caesium
55
Cs | strontium
38
Sr
87.62
barium
56
Ba | 57-70
X | 44.956 yttrium 39 Y 88.906 lutetium 71 Lu | 47.867 zirconium 40 Zr 91.224 hafnium 72 Hf | nioblum 41 Nb 92.906 tantalum 73 Ta | 51,996
molybdenum
42
Mo
95,94
tungsten
74 | technetium 43 TC [98] rhenium 75 Re | ruthenium 44 Ru 101.07 osmium 76 Os | 58.933
rhodium
45
Rh
102.91
iridium | palladium
46
Pd
106.42
platinum | 63,546
silver
47
Ag
107,87
gold | cadmium
48
Cd
112.41
mercury
80 | 69.723
Indium
49
In
114.82
thallium | 72.61 tin 50 Sn 118.71 lead 82 Pb | 74.922
antimony
51
Sb
121.76
bismuth
83
Bi | 78.96 tellurium 52 Te 127.60 polonium 84 Po | 79.904 iodine 53 126.90 astatine 85 At | 83.80
xenon
54
Xe
131.29
radon
86
Rn | | 39.098
rubidium
37
Rb
85.468
caesium
55
Cs
132.91 | 40.078
strontlum
38
Sr
87.62
barium
56
Ba
137.33 | | 44.956 yttrium 39 Y 88.906 lutetium 71 Lu 174.97 | 47.867 zirconium 40 Zr 91.224 hafmium 72 Hf 178.49 | 50.942
niobium
41
Nb
92.906
tantalum
73
Ta
180.95 | 51,996
molybdenum
42
Mo
95,94
tungsten
74
W | 54,938 technetium 43 TC [98] thenium 75 Re 186,21 | 55.845
ruthenium
44
Ru
101.07
osmium
76
Os
190.23 | 58,933
rhodium
45
Rh
102,91
iridium
77
Ir
192,22 | 58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 | 63,546
silver
47
Ag
107,87
gold
79
Au
196,97 | 65,39
cadmium
48
Cd
112,41
mercury
80
Hg
200,59 | 69.723
indium
49
In
114.82
thallium
81 | 72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 | 74.922
antlimony
51
Sb
121.76
bismuth
83 | 78.96
tellurium
52
Te
127.60
polonium
84 | 79.904
lodine
53
126.90
astatine
85 | 83.80
xenon
54
Xe
131.29
radon
86 | | 39.098
rubidium
37
Rb
85.468
caesium
55
Cs
132.91
francium | 40.078
strontum
38
Sr
87.62
barium
56
Ba
137.33
radium | | 44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium | 47,867 zirconium 40 Zr 91,224 hafnium 72 Hf 178.49 rutherfordium | 50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium | 51,996 molybdenum 42 Mo 95,94 tungsten 74 W 183,84 seaborgium | 54,938 technetium 43 TC [98] thenium 75 Re 186.21 bohrium | 55.845
ruthenium
44
Ru
101.07
osmium
76
Os
190.23
hassium | 58,933
rhodium
45
Rh
102,91
iridium
77
Ir | palladium
46
Pd
106.42
platinum
78
Pt | 63,546
silver
47
Ag
107.87
gold
79
Au
196.97
unununium | cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium | 69,723
Indium
49
In
114,82
thallium
81 | 72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium | 74.922
antimony
51
Sb
121.76
bismuth
83
Bi | 78.96 tellurium 52 Te 127.60 polonium 84 Po | 79.904 iodine 53 126.90 astatine 85 At | 83.80
xenon
54
Xe
131.29
radon
86
Rn | | 39.098
rubidium
37
Rb
85.468
caesium
55
CS
132.91
francium
87 | 40.078
strontium
38
Sr
87.62
barium
56
Ba
137.33
radium
88 | × 89-102 | 44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium 103 | 47,867 zirconium 40 Zr 91,224 hafnium 72 Hf 178,49 rutherfordium 104 | 50.942
nioblum
41
Nb
92.906
tantalum
73
Ta
180.95
dubnium
105 | 51,996 molybdenum 42 Mo 95,94 tungsten 74 W 183,84 seaborgium 106 | 54,938 technetium 43 TC [98] thenium 75 Re 186,21 bohrium 107 | 55.845
ruthenium
44
Ru
101.07
osmium
76
OS
190.23
hassium
108 | 58,933
rhodlum
45
Rh
102,91
iridium
77
Ir
192,22
meitnerium
109 | 58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110 | 63,546
silver
47
Ag
107.87
gold
79
Au
196.97
unununium
111 | 65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112 | 69,723
indium
49
In
114.82
thallium
81
TI
204.38 | 72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114 | 74.922
antimony
51
Sb
121.76
bismuth
83
Bi
208.98 | 78.96 tellurium 52 Te 127.60 polonium 84 Po | 79.904 iodine 53 126.90 astatine 85 At | 83.80
xenon
54
Xe
131.29
radon
86
Rn | | 39.098
rubidium
37
Rb
85.468
caesium
55
Cs
132.91
francium | 40.078
strontum
38
Sr
87.62
barium
56
Ba
137.33
radium | * | 44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium | 47,867 zirconium 40 Zr 91,224 hafnium 72 Hf 178.49 rutherfordium | 50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium | 51,996 molybdenum 42 Mo 95,94 tungsten 74 W 183,84 seaborgium | 54,938 technetium 43 TC [98] thenium 75 Re 186.21 bohrium | 55.845
ruthenium
44
Ru
101.07
osmium
76
Os
190.23
hassium | 58,933
rhodlum
45
Rh
102,91
iridium
77
Ir
192,22
meitnerium | 58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110 | 63,546
silver
47
Ag
107.87
gold
79
Au
196.97
unununium | 65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112 | 69,723
indium
49
In
114.82
thallium
81
TI
204.38 | 72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium | 74.922
antimony
51
Sb
121.76
bismuth
83
Bi
208.98 | 78.96 tellurium 52 Te 127.60 polonium 84 Po | 79.904 iodine 53 126.90 astatine 85 At | 83.80
xenon
54
Xe
131.29
radon
86
Rn | *Lanthanide series **Actinide series | s | lanthanum
57 | cerium
58 | praseodymium
59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | |---|-----------------|--------------|--------------------|-----------------|------------------|----------------|----------------|-------------------------|---------------|------------------|---------------|--------------|---------------|-----------------| | 0 | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | | actinium | thorium | protactinium | uranium | neptunium | plutonium | americium | curium | berkelium | californium | einsteinium | fermium | mendelevium | nobelium | | | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | | | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | [258] | [259] | - 1. (5 points each; 30 total) Write the expected product(s) for each of the following reactions. Specify stereochemistry where appropriate, and include all expected products. - A. - 1. Hg(OAc)₂, H₂O - 2. NaBH₄ В. C. E. HNO₃, H₂SO₄ F. Br 2. (5 points each; 25 total) Write (in the box provided) the reagents and/or conditions needed to accomplish the following transformations. 3. (10 points each; 30 total) Write multistep mechanisms (using the correct electron-pushing formalism, and as many steps as needed) for each of the following transformations. Be sure to draw resonance structures for any intermediate so stabilized. A. $$\frac{\text{Cl}_2}{\text{CH}_2\text{Cl}_2} \qquad \frac{\text{Cl}_2}{\text{Cl}_2}$$ C. $$HN$$ Br H_2SO_4 Br Br 4. (6 points each box; 36 total) Indicate in the box a characteristic spectral peak for one compound whose presence will distinguish each pair of isomers. A. OH II | ¹ H | NMF | |----------------|-----| | | | ¹³C NMR В. Ш ¹H NMR ¹³C NMR | 5 (10 points each; 30 total) Draw each structure with hydrogens, and predict the ¹ H NMR spectrum (sketch clearly, or list peaks) of each of the following compounds. Include the spin-spin coupling patterns, but you need not specify J values. Estimate chemical shift to within 1 ppm. | |---| | A. 2-Bromobutane | | | | | | | | | | | | B. (4-chlorophenyl)-ethene | | | | | | | | | | | | C. 3-ethylbenzoic acid | | | | | | | | | 6. (11 points each, 22 points total) Identify each compound based on the spectroscopic information provided. For partial credit, include as much of your analysis (DoU, fragments or functional groups) that you can provide. A. MS parent ion m/z = 88; M+1 peak is 5.5% of the M peak intensity. IR: 3300-3600 cm⁻¹. ¹H NMR: 0.902 d 3H 0.925 d 3H 1.142 d 3H 1.62 sept 1H 2.0 br 1H 3.55 quin 1H (Note: the "triplet" upfield is actually two different doublets that overlap.) 7. (9 points per box, 27 points total) Provide structures for each empty box. Use your understanding of both reaction chemistry and spectroscopic behavior to arrive at the answers. Include stereochemistry. 211 11.96%212 1.36% ## Bond strengths (kcal/mol): | F-F | 38 | |---------------------------------------|------| | CI-CI | 58 | | Br-Br | 46 | | I-I | 36 | | H-F | 136 | | H-Cl | 103 | | H-Br | 87 | | H-I | 71 | | CH₃-H | 105 | | CH ₃ CH ₂ -H | 101 | | (CH ₃) ₂ CH-H | 98.5 | | (CH₃)₃C-H | 96.5 | | CH₃-F | 110 | | CH ₃ -CI | 85 | | CH₃-Br | 70 | | CH ₃ -I | 57 | | CH ₃ CH ₂ -F | 111 | | CH ₃ CH ₂ -Cl | 84 | | CH ₃ CH ₂ -Br | 70 | | CH ₃ CH ₂ -I | 56 | | (CH ₃) ₂ CH-F | 111 | | (CH ₃) ₂ CH-Cl | 84 | | (CH ₃) ₂ CH-Br | 71 | | (CH ₃) ₂ CH-I | 56 | | (CH₃)₃C-F | 110 | | (CH₃)₃C-CI | 85 | | (CH₃)₃C-Br | 71 | | (CH₃)₃C-I | 55 | ## Typical Heats of Hydrogenation | Table 11-4 | Characteristic Infrared Stretching Wavenumber Ranges of | |------------|---| | Table 11-4 | Organic Molecules | | Bond or
Functional Group | $\tilde{\nu}$ (cm ⁻¹) | Bond or
Functional Group | $\tilde{\nu}$ (cm ⁻¹) | |-------------------------------------|-----------------------------------|------------------------------------|-----------------------------------| | RO—H (alcohols) | 3200-3650 | RC≡N (nitriles) | 2220-2260 | | O
 (carboxylic
RCO—H acids) | 2500-3300 | O O (aldehydes, RCH, RCR' ketones) | 1690–1750 | | R ₂ N—H (amines) | 3250-3500 | 0 | | | RC≡C—H (alkynes) | 3260-3330 | RCOR' (esters) | 1735-1750 | | C=C (alkenes) | 3050-3150 | O
 (carboxylic
RCOH acids) | 1710–1760 | | —C—H (alkanes) | 2840-3000 | C=C (alkenes) | 1620–1680 | | RC≡CH (alkynes) | 2100-2260 | (alcohols,
RC—OR' ethers) | 1000-1260 | Increasing wavenumber (energy) | Table 10-2 Typical Hydrogen Chemical Shifts in Organic Molecules | | | | | | | |---|---|---|--|--|--|--| | Type of hydrogen ^a | | Chemical shift δ in ppm | | | | | | Primary alkyl, RCH ₃
Secondary alkyl, RCH ₂ R' | 0.8–1.0 | Alkane and alkane-like hydrogens | | | | | | Tertiary alkyl, R ₃ CH CH ₃ Allylic (next to a double bond), R ₂ C=C | 1.4–1.7 J
1.6–1.9 | | | | | | | Benzylic (next to a benzene ring), ArCH ₂ R Ketone, RCCH ₃ | $\left.\begin{array}{c} 2.2-2.5 \\ 2.1-2.6 \end{array}\right\}$ | Hydrogens adjacent to unsaturated functional groups | | | | | | Ö Alkyne, RC≡CH Chloroalkane, RCH ₂ Cl Bromoalkane, RCH ₂ Br Iodoalkane, RCH ₂ I Ether, RCH ₂ OR' | 1.7–3.1
3.6–3.8
3.4–3.6
3.1–3.3
3.3–3.9 | Hydrogens adjacent to electronegative atoms | | | | | | Alcohol, RCH ₂ OH Terminal alkene, R ₂ C=CH ₂ Internal alkene, R ₂ C=CH | 3.3–4.0
4.6–5.0
5.2–5.7 | Alkene hydrogens | | | | | | Aromatic, ArH Aldehyde, RCH | 6.0–9.5
9.5–9.9 | | | | | | | Alcoholic hydroxy, ROH Thiol, RSH Amine, RNH ₂ | 0.5-5.0
0.5-5.0
0.5-5.0 | (variable)
(variable)
(variable) | | | | | | ^a R, R', alkyl groups; Ar, aromatic group (not argon). | | | | | | | | 'ype of carbon | Chemical shift δ (ppm) | |--|---| | rimary alkyl, RCH ₃ | 5–20 | | econdary alkyl, RCH ₂ R' | 20–30 | | ertiary alkyl, R ₃ CH | 30-50 | | Ouaternary alkyl, R ₄ C | 30–45 | | Allylic, $R_2C = CCH_2R'$ R'' | 20–40 | | Chloroalkane, RCH ₂ Cl | 25–50 | | romoalkane, RCH ₂ Br | 20–40 | | ther or alcohol, RCH ₂ OR' or RCH ₂ OH | 50-90 | | Carboxylic acids, RCOOH | 170–180 | | Aldehyde or ketone, RCH or RCR' Alkene, aromatic, $R_2C = CR_2$ Alkyne, $RC \equiv CR$ | 190–210
100–160
65–95 | | R COOH O O $R_2C = CR_2$ R CH or R CR' | $\begin{array}{c} RCH_2Br \\ RCH_2Cl \\ R_2C=CCH_2R' \\ RCH_2OH \\ R_3CH \\ RC=CR \\ \end{array}$ | | 220 210 200 190 180 170 160 150 140 130 120 110 10 | 00 90 80 70 60 50 40 30 20 10 0 |