
Landau, Paez, Bordeianu: Computational Physics with Python — Chap. 1 — 2023/5/13 — 14:09 — page 21

21

1

Introduction

Beginnings are hard. Nothing is more expensive than a start.

—Chaim Potok — Friedreich Nietzsche

We start this book with a description of how computational physics (CP) fits into the

broader field of computational science, and how CP fits into physics. We describe the

subjects we cover, the coordinated video lectures, and how the book may be used in a

CP course. Finally, we get down to business by discussing the Python language and

its many packages, some of which we’ll use. In Chapter 2 we give an introduction to

Python programming, and in Chapter 7 we examine Python’s treatment of matrices.

1.1

Computational Physics & Science

As illustrated in Figure 1.1, we view computational physics as a bridge that connects

physics, computer science (CS), and applied mathematics. Whereas CS studies com-

puting for its own intrinsic interest and develops the hardware and software tools that

computational scientists use, and while applied mathematics develops and studies

Scientific
 Truth

Scientific Problem Solving

Figure 1.1 On the left a view of Computational Physics as a discipline encompassing

physics, applied mathematics, and computer science. On the right is a broader view of

Computational Physics fitting into various components of scientific problem solving.



Landau, Paez, Bordeianu: Computational Physics with Python — Chap. 1 — 2023/5/13 — 14:09 — page 22

22

the algorithms that computational scientists use, CP focuses on using all of that to

do better and new physics. Furthermore, just as an experimentalist must understand

many aspects of an experiment to ensure that her measurements are accurate and

believable, so should every physicist undertaking a computation understand the CS

and math well enough ensure that her computations are accurate and precise.

As CP has matured, we see it not only as a bridge among disciplines, but also as

a specialty containing core elements of it own, such as data-mining tools, computa-

tional methods, and a problem-solving mindset. To us, CP’s commonality of tools

and viewpoint with other computational sciences makes it a good training ground

for students, and a welcome change from the overspecialization found in so much of

physics.

As part of this book’s emphasis on problem solving, we strive to present the sub-

jects within a problem-solving paradigm, as illustrated on the right of Figure 1.1.

Our’s is a hands-on, inquiry-based approach in which there are problems to solve,

a theory or an appropriate model to apply, an appropriate algorithm to use, and an

assessment of the results. This approach can be traced back to the post World War II

research techniques developed at US national laboratories. They deserve the credit

for extending the traditional experimental and theoretical approaches of physics to

also include simulation. Recent developments have also introduced powerful data

mining tools, such as neural networks, artificial intelligence, and quantum comput-

ing.

1.2

This Book’s Subjects

We do not intend this book to be a scholarly exposition into the foundations of CP.

Instead, we employ a learn-by-doing approach with many exercises, problems, and

ready-to-run codes. We survey many of the subjects that constitute CP at a level

appropriate for undergraduate education, except maybe for the latter parts of some

chapters. Our experience is that many graduate students and professionals may also

benefit from this survey approach in which a basic understanding of a broad range

of topics facilitates further in-depth study.

The early chapters covers basic numerics, ordinary differential equations with

(many) applications, matrix computing using well-developed linear algebra libraries,

and Monte-Carlo methods. Some powerful data mining tools such as discrete Fouri-

er transforms, wavelet analysis, principal component analysis, and neural networks

are covered in the middle of the book.

A traditional way to view the materials in this text is in terms of its use in cours-

es. For a one-quarter class we used approximately the first third of the text, with

its emphasis on computing tool familiarity with a compiled language [CPUG, 09].

The latter two-thirds of the text, with its greater emphasis on physics, has typically

been used for a two-quarter (20-week) course. What with many of the topics taken

from research, these materials can easily be used for a full year’s course, and for

supplementary research projects.



Landau, Paez, Bordeianu: Computational Physics with Python — Chap. 1 — 2023/5/13 — 14:09 — page 23

23

Figure 1.2 A screenshot from a lecture module showing a dynamic table of contents, a

talking head, video controls, a slide with live scribbling, and some old man. (Originally in

Flash, now as mpegs.)

1.3

Video Lecture Supplements

As as an extension of the concept of a “text”, we provide some 60 video lecture

modules that cover most every topic in the book. The modules were originally a mix

of Flash, Java, HTML and mpeg, but with Flash no longer supported, we provide

them as mp4 videos and pdf slides. They are available on our Website:

sites.science.oregonstate.edu/∼landaur/Books/CPbook/eBook/Lectures,

as well as on our YouTube channel under Landau Computational Physics Course:

www.youtube.com/playlist?list=PLnWQ_pnPVzmJnp794rQXIcwJIjwy7Nb2U.

The video lectures can be used to preview or review materials, as part of an online

course, or in a blended course in which they replace some lectures, thereby freeing

up time for lab work with the instructor.

1.4

This Book’s Codes and Problems

Separate from the problems and exercises throughout the text, most every chapter

starts off with a keynote “Problem” that lead into the various steps in computation-

al problem solving (Figure 1.1). The additional problems and exercises distributed

throughout the chapters are essential ingredients for learning, and are meant to be

worked through. This entails studying the text, writing, debugging and running pro-

grams, visualizing the results, and expressing in words what has been performed,

and what can be concluded. We asked our students to write up mini lab reports

containing

Equations solved Numerical method Code listing



Landau, Paez, Bordeianu: Computational Physics with Python — Chap. 1 — 2023/5/13 — 14:09 — page 24

24

Visualization Discussion Critique

Although we recognize that programming is a valuable skill for scientists, we

also know that it is incredibly exacting and time-consuming. In order to lighten the

workload, we provide programs for most of the problems in the text, both at the end

of each chapter and online at:

sites.science.oregonstate.edu/∼landaur/Books/CPbook/Codes/.

A complete list is given in the Appendix. We recommend that these codes be used

as guides for the reader when writing their own programs, or, at the least, tested

and extended to solve the problem at hand. We have been told that learning how to

use someone else’s code is a valuable workplace skill to develop; as with programs

encountered in a workplace, they should be understood before use!

1.5

Our Language: The Python Ecosystem

The codes in this edition of Computational Physics employ the computer language

Python. Previous editions have employed Java, Fortran and C, and used post-

computation tools for visualization.1) Python’s combination of language plus pack-

ages now make it the standard for the explorative and interactive computing that

typifies present-day scientific research.

Although valuable for research, we have also found Python to be the best language

yet for teaching and learning CP. It is free, robust (programs don’t crash), portable

(programs run without modifications on various devices), universal (available for

most every computer system), has a clean syntax that permits rapid learning, has dy-

namic typing (changes data types automatically as needed), high-level, built-in data

types (such as complex numbers), and built-in visualization. Furthermore, because

Python is interpreted, students can learn the language by executing and analyzing

individual statements within an interactive shell, or within a notebook environment,

or by running an entire program in one fell swoop. Finally, it is easy to use the

myriad of free Python packages supporting numerical algorithms, state-of the art

visualizations, as well as specialized toolkits that rival those in Matlab and Mathe-

matica/Maple. And did we mention, all of this is free?

Although we do not expect the readers to be programming experts, it is essential

to be able to run and modify the sample codes in this book. For learning Python we

recommend the online tutorials [PyTut, 23; Pguide, 23; Plearn, 23], the book [Lang-

tangen, 16], and the many books in the “Python for Scientists and Engineers” genre.

For general numerical methods, [Press et al., 07] is the standard, and fun to read.

The NITS Digital Library of Mathematical Functions [NIST, 22] is a convenient

reference for mathematical functions and numerical methods.

Python has developed rapidly since its first implementation in December 1989

[History, 22]. The rapid developments of Python have led to a succession of new

versions, and the inevitable incompatibilities. The codes presented in the book are

1) All of our codes, even the old ones, are available online.



Landau, Paez, Bordeianu: Computational Physics with Python — Chap. 1 — 2023/5/13 — 14:09 — page 25

25

in the present standard, Python 3. The major difference from Python 2 is the print

statement:
✞ ☎
1 >>> p r i n t ’Hello, World!’ # Python 2

>>> p r i n t (’Hello, World!’ ) # Python 3
✝

1.6

The Easy Way: Python Distributions

The Python language plus its family of packages comprise a veritable ecosystem for

computing. A package, or library, or module, is a collection of related methods,

or classes of methods, that are assembled and designed to work together. Inclusion

of the appropriate packages extend the language to meet the specialized needs of

various science and engineering disciplines [CiSE, 15]. The Python Package Index

[PyPi, 23], a repository of free Python packages, currently contains 425,320 projects

and 7,313,641 files. In this book we use:

Jupyter Notebooks: A web-based, interactive Python computing environment

combining live code, type-set equations, narrative text, visualizations, and what-

ever. Some of our programs (.ipynb suffix) were developed in Jupyter, and our

programs using Vpython work only within Jupyter. There is a previous edition of

this text in notebook form at

sites.science.oregonstate.edu/∼landaur/Books/CPbook/eBook/.

The interactive Python shell, IPython can also be used within Jupyter.

Numpy (Numerical Python): A comprehensive library of mathematical func-

tions, random number generators, linear algebra routines, Fourier transforms, and

most everything else. Permits the use of fast, high-level multidimensional arrays

(explained in Chapter 7). The successor to both Numeric and NumArray, NumPy

is used by Visual and Matplotlib.

Matplotlib (Mathematics Plotting Library): A 2D and 3D graphics library that

uses NumPy, that produces publication-quality figures in a variety of hard copy

formats, and that permits interactive graphics. Similar to Matlab’s plotting (except

Matplotlib is free and doesn’t need its license renewed yearly).

Pandas (Python Data Analysis Library): A collection of high-performance,

user-friendly data structures and data analysis tools (used in Chapter 11).

SymPy (Symbolic Python): A system for symbolic mathematics using pure

Python (no external libraries) that provide a simple computer algebra system in-

cluding calculus, differential equations, etc.. Similar to Maple or Mathematica,

with the Sage package being even more complete. Examples in §2.3.6.

Visual (Vpython): The Python language plus the no-longer-supported Visual

graphics module (superseded by GlowScript). Particularly easy for creating ed-

ucational 3D demonstrations and animations. Still useful as Web Vpython and

within Jupyter notebooks.



Landau, Paez, Bordeianu: Computational Physics with Python — Chap. 1 — 2023/5/13 — 14:09 — page 26

26

Although most Python packages are free, there is true value for both users and

vendors to distribute a collection of packages that have been engineered and tuned

to work well together, and that can be installed in one fell swoop. (This is similar

to what Red Hat and Debian distributions for Linux.) These distributions can be

thought of as complete, Python ecosystems and are highly recommended. In partic-

ular, all you really need to do to get started with Python computing for this book is

to load:

AnaConda: a free Python distribution including more than 8000 packages for sci-

ence, mathematics, engineering, machine learning, and data analysis. Anaconda

installs in its own directory and so runs independently from other Python installa-

tions on your computer. Go to

www.anaconda.com/products/distribution

to download Anaconda. Once you install Anaconda, the Navigator should open,

and it will let you choose all that you will need.

Spyder IDE: The Scientific PYthon Development EnviRonment. An Integrated

Development Environment (IDE) with advanced editing, interactive testing of

code, debugging, and more.

Jupyter Notebook: The Web-based interactive computing notebook environment

used for editing and running type-set-like documents, while also running Python

code within the documents. As we have already said, a notebook (.ipyn) version

of an earlier edition of this text is at

sites.science.oregonstate.edu/∼landaur/Books/CPbook/eBook/.

Powershell Prompt: A powerful terminal that run conda commands under the

Windows shell environments cmd.exe (Command Prompt) and powershell.exe.

Apple has a Terminal app where you will find a command prompt.

Conda: A package management and environment system included in Anaconda

that finds, installs, and updates packages and their dependencies for you.

In Chapter 11 we describe how to load and run Google’s TensorFlow package for

machine learning, and in Chapter 12 we describe how to load and run the Quantum

Computing packages, Cirq, IBM Quantum, and Qiskit.


