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What is Aliasing?
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Signal contains 2
functions
sin(πt/2) & sin(2πt)
Distinguish?
Interfere?

Finite Sampling Ambiguity

Sample at t = 0, 2, 4, 6, 8,: y ≡ 0
Sample at t = 0, 12

10 ,
4
3 , . . . (•): sin(πt/2) = sin(2πt)

Finite sample ⇒ high-ω “between the cracks”
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Consequences of Aliasing
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(Wikipedia)

High-ω contaminates low
Moiré distortion in synthesis
“High-ω aliased by low”
Math: for sampling rate s = N/T

ω, ω − 2s
Same DFT if

s =
N
T
≤ ω

2
(1)
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Eliminating Aliasing

Recall: s = N/T = sampling rate
Nyquist criterion: no frequency > s/2 in input signal
Filter out high ω (e.g. sinc filter) → good low ω

Good High ω

Can’t do high-ω right @ this sampling rate
Need more sampling, higher s
→ higher ω in spectrum middle (ends = error prone)
Recall: padding with 0s (larger T )→ smoother Y (ω)

0 20

0

1

Y
(
)

ω 40
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Assessment of Aliasing

1 Perform DFT on y(t) = sin
(

π
2 t

)
+ sin(2πt).

2 True TF peaks at ω = π/2 & ω = 2π.
3 Look for aliasing at low sample rate.
4 Verify that aliasing vanishes at high sampling rate.
5 Verify the Nyquist criterion computationally.
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Summary

If sampling rate is low, some high frequency components
can contaminate the deduced low-frequency components.
The reconstructed signal will show distortions.
Nyquist criterion to eliminate aliasing: no frequency
> (N/T )/2 in input signal.
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