Aliasing in Fourier Analysis Optional Assessment; Practically Important

Rubin H Landau

Sally Haerer, Producer-Director

Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu

with Support from the National Science Foundation

Course: Computational Physics II

4 E 5

Outline

2/1

- Sample at $t = 0, 2, 4, 6, 8, : y \equiv 0$
- Sample at $t = 0, \frac{12}{10}, \frac{4}{3}, \dots$ (•): $\sin(\pi t/2) = \sin(2\pi t)$
- Finite sample \Rightarrow high- ω "between the cracks"

- Sample at $t = 0, 2, 4, 6, 8, : y \equiv 0$
- Sample at $t = 0, \frac{12}{10}, \frac{4}{3}, \dots$ (•): $\sin(\pi t/2) = \sin(2\pi t)$
- Finite sample \Rightarrow high- ω "between the cracks"

- Sample at $t = 0, 2, 4, 6, 8, : y \equiv 0$
- Sample at $t = 0, \frac{12}{10}, \frac{4}{3}, \dots$ (•): $\sin(\pi t/2) = \sin(2\pi t)$
- Finite sample \Rightarrow high- ω "between the cracks"

- Sample at $t = 0, 2, 4, 6, 8, : y \equiv 0$
- Sample at $t = 0, \frac{12}{10}, \frac{4}{3}, \dots$ (•): $\sin(\pi t/2) = \sin(2\pi t)$
- Finite sample \Rightarrow high- ω "between the cracks"

- Sample at $t = 0, 2, 4, 6, 8, : y \equiv 0$
- Sample at $t = 0, \frac{12}{10}, \frac{4}{3}, \dots$ (•): $\sin(\pi t/2) = \sin(2\pi t)$
- Finite sample \Rightarrow high- ω "between the cracks"

- Sample at $t = 0, 2, 4, 6, 8, : y \equiv 0$
- Sample at $t = 0, \frac{12}{10}, \frac{4}{3}, \dots$ (•): $\sin(\pi t/2) = \sin(2\pi t)$
- Finite sample \Rightarrow high- ω "between the cracks"

- Sample at $t = 0, 2, 4, 6, 8, : y \equiv 0$
- Sample at $t = 0, \frac{12}{10}, \frac{4}{3}, \dots$ (•): $\sin(\pi t/2) = \sin(2\pi t)$
- Finite sample \Rightarrow high- ω "between the cracks"

(Wikipedia)

- High- ω contaminates low
- Moiré distortion in synthesis
- "High- ω aliased by low"
- Math: for sampling rate s = N/T

- ω, ω 2s
 Same DFT if
 - $s=rac{N}{T}\leqrac{\omega}{2}$ (1)

• High- ω contaminates low

- Moiré distortion in synthesis
- "High- ω aliased by low"
- Math: for sampling rate s = N/T

- ω, ω 2s
 Same DFT if
 - $s = \frac{N}{T} \le \frac{\omega}{2}$ (1)

- High- ω contaminates low
- Moiré distortion in synthesis
- "High- ω aliased by low"
- Math: for sampling rate s = N/T

ω, ω – 2s
Same DFT if

 $s=rac{N}{T}\leqrac{\omega}{2}$ (1)

・ロ> < 部> < 言> < 言> こ
 ・12/1

- High- ω contaminates low
- Moiré distortion in synthesis
- "High- ω aliased by low"
- Math: for sampling rate s = N/T

ω, ω – 2s
Same DFT if

 $s=rac{N}{T}\leqrac{\omega}{2}$ (1)

・・・・
 ・・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・<

- High- ω contaminates low
- Moiré distortion in synthesis
- "High- ω aliased by low"
- Math: for sampling rate s = N/T

- ω, ω 2s
 Same DFT if
 - $s=rac{N}{T}\leqrac{\omega}{2}$ (1)

・ロ ・ ・ 一部 ・ く 言 ・ く 言 ・ う へ や
14/1

- High- ω contaminates low
- Moiré distortion in synthesis
- "High- ω aliased by low"
- Math: for sampling rate s = N/T

- ω, ω 2s
- Same DFT if

15/1

- High- ω contaminates low
- Moiré distortion in synthesis
- "High- ω aliased by low"
- Math: for sampling rate s = N/T

- ω, ω − 2s
- Same DFT if
 - $s=rac{N}{T}\leqrac{\omega}{2}$ (1)

- Recall: s = N/T = sampling rate
- Nyquist criterion: no frequency > s/2 in input signal
- Filter out high ω (*e.g.* sinc filter) \rightarrow good low ω

- Can't do high-ω right @ this sampling rate
- Need more sampling, higher s
- \rightarrow higher ω in spectrum middle (ends = error prone)
- Recall: padding with 0s (larger T) \rightarrow smoother $Y(\omega)$

- Recall: s = N/T = sampling rate
- Nyquist criterion: no frequency > s/2 in input signal
- Filter out high ω (*e.g.* sinc filter) \rightarrow good low ω

- Can't do high- ω right @ this sampling rate
- Need more sampling, higher s
- \rightarrow higher ω in spectrum middle (ends = error prone)
- Recall: padding with 0s (larger T) \rightarrow smoother $Y(\omega)$

- Recall: s = N/T = sampling rate
- Nyquist criterion: no frequency > s/2 in input signal
- Filter out high ω (*e.g.* sinc filter) \rightarrow good low ω

- Can't do high- ω right @ this sampling rate
- Need more sampling, higher s
- \rightarrow higher ω in spectrum middle (ends = error prone)
- Recall: padding with 0s (larger T) \rightarrow smoother $Y(\omega)$

- Recall: s = N/T = sampling rate
- Nyquist criterion: no frequency > s/2 in input signal
- Filter out high ω (*e.g.* sinc filter) \rightarrow good low ω

- Can't do high- ω right @ this sampling rate
- Need more sampling, higher s
- \rightarrow higher ω in spectrum middle (ends = error prone)
- Recall: padding with 0s (larger T) \rightarrow smoother $Y(\omega)$

- Recall: s = N/T = sampling rate
- Nyquist criterion: no frequency > s/2 in input signal
- Filter out high ω (*e.g.* sinc filter) \rightarrow good low ω

- Can't do high- ω right @ this sampling rate
- Need more sampling, higher s
- \rightarrow higher ω in spectrum middle (ends = error prone)
- Recall: padding with 0s (larger T) \rightarrow smoother $Y(\omega)$

- Recall: s = N/T = sampling rate
- Nyquist criterion: no frequency > s/2 in input signal
- Filter out high ω (*e.g.* sinc filter) \rightarrow good low ω

- Can't do high-ω right @ this sampling rate
- Need more sampling, higher s
- \rightarrow higher ω in spectrum middle (ends = error prone)
- Recall: padding with 0s (larger T) \rightarrow smoother $Y(\omega)$

- Recall: s = N/T = sampling rate
- Nyquist criterion: no frequency > s/2 in input signal
- Filter out high ω (*e.g.* sinc filter) \rightarrow good low ω

- Can't do high-ω right @ this sampling rate
- Need more sampling, higher s
- \rightarrow higher ω in spectrum middle (ends = error prone)
- Recall: padding with 0s (larger T) \rightarrow smoother $Y(\omega)$

- Recall: s = N/T = sampling rate
- Nyquist criterion: no frequency > s/2 in input signal
- Filter out high ω (*e.g.* sinc filter) \rightarrow good low ω

- Can't do high-ω right @ this sampling rate
- Need more sampling, higher s
- \rightarrow higher ω in spectrum middle (ends = error prone)
- Recall: padding with 0s (larger T) \rightarrow smoother $Y(\omega)$

- Recall: s = N/T = sampling rate
- Nyquist criterion: no frequency > s/2 in input signal
- Filter out high ω (*e.g.* sinc filter) \rightarrow good low ω

- Can't do high-ω right @ this sampling rate
- Need more sampling, higher s
- \rightarrow higher ω in spectrum middle (ends = error prone)
- Recall: padding with 0s (larger T) \rightarrow smoother $Y(\omega)$

Assessment of Aliasing

- **1** Perform DFT on $y(t) = \sin(\frac{\pi}{2}t) + \sin(2\pi t)$.
- ② True TF peaks at $\omega = \pi/2$ & $\omega = 2\pi$.
- Look for aliasing at low sample rate.
- Verify that aliasing vanishes at high sampling rate.
- 5 Verify the Nyquist criterion computationally.

Assessment of Aliasing

1 Perform DFT on $y(t) = \sin(\frac{\pi}{2}t) + \sin(2\pi t)$.

- 2) True TF peaks at $\omega = \pi/2$ & $\omega = 2\pi$.
- Look for aliasing at low sample rate.
- Verify that aliasing vanishes at high sampling rate.
- Verify the Nyquist criterion computationally.

- **1** Perform DFT on $y(t) = \sin(\frac{\pi}{2}t) + \sin(2\pi t)$.
- 2 True TF peaks at $\omega = \pi/2$ & $\omega = 2\pi$.
- Look for aliasing at low sample rate.
- Verify that aliasing vanishes at high sampling rate.
- Verify the Nyquist criterion computationally.

- **1** Perform DFT on $y(t) = \sin(\frac{\pi}{2}t) + \sin(2\pi t)$.
- 2 True TF peaks at $\omega = \pi/2$ & $\omega = 2\pi$.
- Look for aliasing at low sample rate.
- Verify that aliasing vanishes at high sampling rate.
- Verify the Nyquist criterion computationally.

- **1** Perform DFT on $y(t) = \sin(\frac{\pi}{2}t) + \sin(2\pi t)$.
- 2 True TF peaks at $\omega = \pi/2$ & $\omega = 2\pi$.
- Look for aliasing at low sample rate.
- Verify that aliasing vanishes at high sampling rate.
- Verify the Nyquist criterion computationally.

- **1** Perform DFT on $y(t) = \sin(\frac{\pi}{2}t) + \sin(2\pi t)$.
- 2 True TF peaks at $\omega = \pi/2$ & $\omega = 2\pi$.
- Look for aliasing at low sample rate.
- Verify that aliasing vanishes at high sampling rate.
- Solution Verify the Nyquist criterion computationally.

Summary

- If sampling rate is low, some high frequency components can contaminate the deduced low-frequency components.
- The reconstructed signal will show distortions.
- Nyquist criterion to eliminate aliasing: no frequency > (N/T)/2 in input signal.