Discrete Nonlinear Dynamics; Bugs A Success Story of Computational Science (solitons, chaos, fractals)

Rubin H Landau

Sally Haerer, Producer-Director

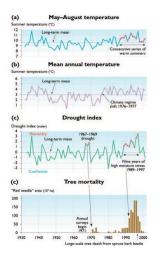
Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu

with Support from the National Science Foundation

Course: Computational Physics II

Problem: Why Is Nature So Complicated?

- Insect populations, weather patterns
- Complex behavior
- Stable, periodic, chaotic, stable, ...
- **Problem:** can a simple, discrete law produce such complicated behavior?



Model Realistic Problem: Bug Cycles

Bugs Reproduce Generation after Generation = i

•
$$N_0 \rightarrow N_1, N_2, \dots N_\infty$$

- $N_i = f(i)$?
- Seen discrete law,

$$\frac{\Delta N}{\Delta t} = -\lambda N$$
$$\Rightarrow \simeq e^{-\lambda t}$$

• $-\lambda \rightarrow +\lambda \Rightarrow \text{growth}$

Refine Model: Maximum Population N_{*}

Incorporate Carrying Capacity into Rate

Assume breeding rate proportional to number of bugs:

$$\frac{\Delta N_i}{\Delta t} = \lambda \ N_i$$

• Want growth rate \downarrow as $N_i \rightarrow N_*$

• Assume
$$\lambda = \lambda' (N_* - N_i)$$

$$\Rightarrow \frac{\Delta N_i}{\Delta t} = \lambda' (N_* - N_i) N_i \qquad \text{(Logistic Map)}$$

- Small $N_i/N_* \Rightarrow$ exponential growth
- $N_i \rightarrow N_* \Rightarrow$ slow growth, stable, decay

Logistic as Map in Dimensionless Variables

As Population, Change Variables

$$N_{i+1} = N_i + \lambda' \Delta t (N_* - N_i) N_i$$
(1)

 $x_{i+1} = \mu x_i (1 - x_i)$ (Logistic Map) (2)

$$\mu \stackrel{\text{def}}{=} 1 + \lambda' \Delta t N_*, \qquad x_i \stackrel{\text{def}}{=} \frac{\lambda' \Delta t}{\mu} N_i \simeq \frac{N_i}{N_*}$$
(3)

$$x_i \simeq \frac{N_i}{N_*} = ext{fraction of max}$$
 (4)

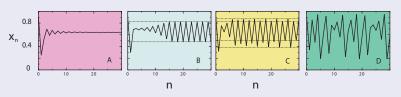
• $0 \le x_i \le 1$ • Map: $x_{i+1} = f(x_i)$ • Quadratic, 1-D map • $f(x) = \mu x(1-x)$

э

(ロ) (四) (三) (三) (三)

Properties of Nonlinear Maps (Theory)

Empirical Study: Plot x_i vs i



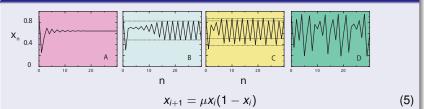
• A: $\mu = 2.8$, equilibration into single population

- B: $\mu = 3.3$, oscillation between 2 population levels
- C: $\mu = 3.5$ oscillation among 4 levels

D: chaos

Fixed Points

x_i Stays at x_* or Returns



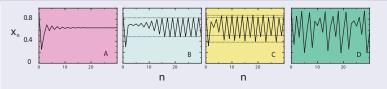
• One-cycle: $x_{i+1} = x_i = x_*$

$$\mu x_*(1 - x_*) = x_* \tag{6}$$

$$\Rightarrow x_* = 0, \quad x_* = \frac{\mu - 1}{\mu} \tag{7}$$

Period Doubling, Attractors

Unstable via Bifurcation into 2-Cycle



- Attractors, cycle points
- Predict: same population generation *i*, *i* + 2

$$x_i = x_{i+2} = \mu x_{i+1} (1-x_{i+1}) \Rightarrow x_* = \frac{1+\mu \pm \sqrt{\mu^2 - 2\mu - 3}}{2\mu}$$

- $\mu > 3$: real solutions
- Continues 1 \rightarrow 2 populations

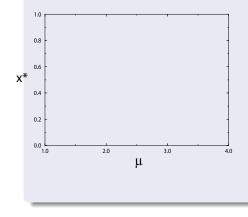
Exercise 1

Produce sequence x_i

1	Confirm behavior patterns A, B, C, D
2	Identify the following:
	Transients
	Asymptotes
	Extinction
	Stable states
	Multiple cycles
	Four-cycle
	Intermittency $3.8264 < \mu < 3.8304$
	Chaos deterministic irregularity; hypersensitivity \Rightarrow nonpredictable, $\mu = 4$, $4(1 - \epsilon)$

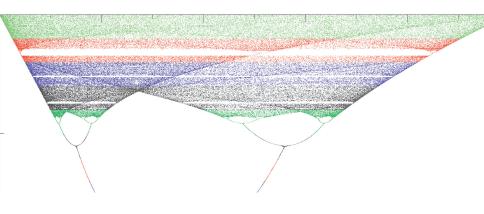
Bifurcation Diagram (Assessment)

Concentrate on Attractors



- Simplicity in chaos
- Attractors as $f(\mu)$
- Scan x₀, μ
- Let transients die
- Output (μ, x_{*})s
- *n* cycle = *n* values
- See enlargements

Detailed Bifurcation Diagram

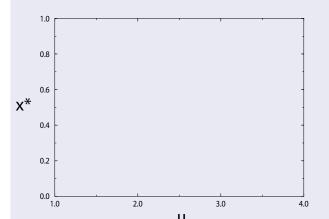


Bifurcation Diagram Sonification

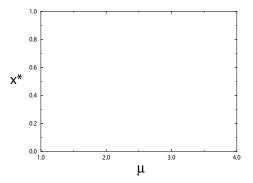
Play Bifurcation Diagram

- Hear each bifurcation
- Each branch = one ω

- $\omega \propto \mathbf{X}^*$
- Bifurcation = new ω , cord



Exercise 2: Bifurcation Diagram



- Can't vary intensity
- Vary point density
- Resolution \sim 300 DPI
- $\bullet~3000\times 3000\simeq 10^7~pts$
- Big, more = waste
- Create 1000 bins
- 1 ≤ µ ≤ 4
- Print x_{*} 3-4 decimal places
- Remove duplicates
- Enlarge: self-similarity
- Observe windows

13/1

Summary & Conclusion

Simplicity & Beauty within Chaos

- Yes, simple discrete maps can lead to complexity
- Models of real world complexity
- Complexity related to nonlinearity (x²)
- Computation crucial for nonlinear systems
- Signals of simplicity, chaos Bifurcation Diagram

Feigenbaum Constants

- Lyapunov Coefficients
- Shannon Entropy
- Fractal Dimension