Discrete Nonlinear Dynamics; Bugs

A Success Story of Computational Science
(solitons, chaos, fractals)

Rubin H Landau

Sally Haerer, Producer-Director
Based on A Survey of Computational Physics by Landau, Paez, & Bordeianu

with Support from the National Science Foundation

Course: Computational Physics Il




Problem: Why Is Nature So Complicated?
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Model Realistic Problem: Bug Cycles
Bugs Reproduce Generation after Generation = i
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o N; = f(i)?

@ Seen discrete law,
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Refine Model: Maximum Population N,

Incorporate Carrying Capacity into Rate

@ Assume breeding rate proportional to number of bugs:

AN;
At‘ = A N/

@ Want growth rate | as N; — N,
@ Assume X = XN(N, — N))

AA/\t/i = X(N. — N))N; (Logistic Map)

@ Small N;/N, = exponential growth

@ N; — N, = slow growth, stable, decay




Logistic as Map in Dimensionless Variables

As Population, Change Variables

N,'+1 =N, + by At(N* = N,')N,' (1)
X1 = px(1—x)  (Logistic Map) (2)
N A N;
1 & + X AtN,, X; e 7tN,- ~ L (3)
Iz N,
Xj ~ ﬁl = fraction of max (4)
e 0<x <1 @ Quadratic, 1-D map
@ Map: x;1 = f(x) @ f(x)=pux(1—x)
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Properties of Nonlinear Maps (Theory)

Empirical Study: Plot x; vs i
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@ A: u = 2.8, equilibration into single population
@ B: = 3.3, oscillation between 2 population levels

@ C: u = 3.5 oscillation among 4 levels

@ D:chaos




Fixed Points

x; Stays at x. or Returns
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Xit1 = pxi(1 = xi) ()

@ One-cycle: Xj11 = Xi = X

MX*(1 - X*) = Xx (6)




Period Doubling, Attractors

Unstable via Bifurcation into 2-Cycle
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@ Attractors, cycle points
@ Predict: same population generation i, i + 2

1+pu+/p2—2u—3

2

Xi = Xiy2 = pXip1(1=Xip1) = X =

@ . > 3: real solutions
@ Continues 1 — 2 populations




Exercise 1

@ Confirm behavior patterns A, B, C, D
© Identify the following:

Transients

Asymptotes

Extinction

Stable states

Multiple cycles

Four-cycle

Intermittency 3.8264 < i < 3.8304

Chaos deterministic irregularity; hypersensitivity
= nonpredictable, u =4, 4(1 —¢)




Bifurcation Diagram (Assessment)

Concentrate on Attractors

@ Simplicity in chaos

@ Attractors as f(u)

x* "l / \<

aall @ Let transients die
0'2/ @ Output (p, x«)s

0.0

@ Scan Xxg, i

m ' @ ncycle = nvalues

@ See enlargements




Detailed Bifurcation Diagram




Bifurcation Diagram Sonification

Play Bifurcation Diagram

@ Hear each bifurcation
@ Each branch = one w
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@ Bifurcation = new w, cord
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Exercise 2: Bifurcation Diagram

@ Can't vary intensity
Vary point density
Resolution ~ 300 DPI
3000 x 3000 ~ 107 pts
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@ Big, more = waste
oaf @ Create 1000 bins
e1<u<4
°
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02

00 Print x. 3-4 decimal places
Remove duplicates
Enlarge: self-similarity

Observe windows



Summary & Conclusion

Simplicity & Beauty within Chaos

@ Yes, simple discrete maps can lead to complexity
@ Models of real world complexity

@ Complexity related to nonlinearity (x?)

@ Computation crucial for nonlinear systems

@ Signals of simplicity, chaos
Bifurcation Diagram

Feigenbaum Constants
Lyapunov Coefficients
Shannon Entropy

Fractal Dimension




