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Problem: Why Is Nature So Complicated?

Insect populations,
weather patterns
Complex behavior

Stable, periodic, chaotic,
stable, . . .

Problem: can a simple,
discrete law produce such
complicated behavior?
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Model Realistic Problem: Bug Cycles

Bugs Reproduce Generation after Generation = i

N0 → N1,N2, . . .N∞

Ni = f (i)?

Seen discrete law,

∆N
∆t

= − λN

⇒ ' e−λt

−λ→ +λ ⇒ growth

∆Ni

∆t
= λ Ni
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Refine Model: Maximum Population N∗

Incorporate Carrying Capacity into Rate

Assume breeding rate proportional to number of bugs:

∆Ni

∆t
= λ Ni

Want growth rate ↓ as Ni → N∗

Assume λ = λ′(N∗ − Ni)

⇒ ∆Ni

∆t
= λ′(N∗ − Ni)Ni (Logistic Map)

Small Ni/N∗ ⇒ exponential growth

Ni → N∗ ⇒ slow growth, stable, decay

4 / 1



Logistic as Map in Dimensionless Variables

As Population, Change Variables

Ni+1 =Ni + λ′∆t(N∗ − Ni)Ni (1)

xi+1 = µxi(1− xi) (Logistic Map) (2)

µ
def
= 1 + λ′∆tN∗, xi

def
=

λ′∆t
µ

Ni '
Ni

N∗
(3)

xi '
Ni

N∗
= fraction of max (4)

0 ≤ xi ≤ 1
Map: xi+1 = f (xi)

Quadratic, 1-D map
f (x) = µx(1− x)
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Properties of Nonlinear Maps (Theory)

Empirical Study: Plot xi vs i
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A: µ = 2.8, equilibration into single population

B: µ = 3.3, oscillation between 2 population levels

C: µ = 3.5 oscillation among 4 levels

D: chaos
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Fixed Points

xi Stays at x∗ or Returns

0 10 20
0

0.4

0.8

A

0 10 20

B

0 10 20

C

0 10 20

D

xn

n n

xi+1 = µxi(1− xi) (5)

One-cycle: xi+1 = xi = x∗

µx∗(1− x∗) = x∗ (6)

⇒ x∗ = 0, x∗ =
µ− 1
µ

(7)
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Period Doubling, Attractors

Unstable via Bifurcation into 2-Cycle
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Attractors, cycle points
Predict: same population generation i , i + 2

xi = xi+2 = µxi+1(1−xi+1) ⇒ x∗ =
1 + µ±

√
µ2 − 2µ− 3
2µ

µ > 3: real solutions
Continues 1→ 2 populations
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Exercise 1

Produce sequence xi

1 Confirm behavior patterns A, B, C, D
2 Identify the following:

Transients
Asymptotes

Extinction
Stable states
Multiple cycles
Four-cycle

Intermittency 3.8264 < µ < 3.8304
Chaos deterministic irregularity; hypersensitivity

⇒ nonpredictable, µ = 4, 4(1− ε)
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Bifurcation Diagram (Assessment)

Concentrate on Attractors
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Simplicity in chaos

Attractors as f (µ)

Scan x0, µ

Let transients die

Output (µ, x∗)s

n cycle = n values

See enlargements
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Detailed Bifurcation Diagram
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Bifurcation Diagram Sonification

Play Bifurcation Diagram

Hear each bifurcation
Each branch = one ω

ω ∝ x∗

Bifurcation = new ω, cord
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Exercise 2: Bifurcation Diagram
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Can’t vary intensity

Vary point density

Resolution ∼ 300 DPI

3000× 3000 ' 107 pts

Big, more = waste

Create 1000 bins

1 ≤ µ ≤ 4

Print x∗ 3-4 decimal places

Remove duplicates

Enlarge: self-similarity

Observe windows
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Summary & Conclusion

Simplicity & Beauty within Chaos
Yes, simple discrete maps can lead to complexity

Models of real world complexity

Complexity related to nonlinearity (x2)

Computation crucial for nonlinear systems

Signals of simplicity, chaos
Bifurcation Diagram

Feigenbaum Constants

Lyapunov Coefficients

Shannon Entropy

Fractal Dimension
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