Continuous Wavelet Transforms

Part | (Discrete to Follow)

Rubin H Landau

Sally Haerer, Producer-Director
Based on A Survey of Computational Physics by Landau, Paez, & Bordeianu

with Support from the National Science Foundation

Course: Computational Physics Il




Problem: Multiple Frequencies in Time

Non Statlonary Slgnals
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@ Amount w; at each t? @ Numerical signal OK
@ A number of w’s in t @ Here analytic:
sin 2rt, for 0 <t<2,
y(t) = < 5sin2xt + 10sin 4xt, for 2 <t <8,

2.5sin2nt + 6sin4nt + 10sin6xt, for 8 <t < 12.




Why Not Fourier Analysis?

Fourier Limitation: amount of sin(nwt)

pgflastimage

. : No time resolution
@ OK for stationary signals ® Notime resolutio

o Not OK for Problem @ Fourier: correlated w;’s

@ Poor data compression;

@ Fourier: all w; all time
! recompute ¢;




Wavelets in a Nutshell

Three Wavelet Examples
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2 (249 RO @ Varied functional forms
@ Nonstationary signals @ Wavelet basis expansion
@ Fairly recent @ "let": small wave (pack)

Each: finite & A T

Extensive applications

Each: center different ¢

E.g.: all oscillate




Wave Packets = >~ Waves

Wave Packet e.g. N Cycle Sine
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@ Packet = y(t) = pulse At @ = Y(w) =pulse Aw

sinwpt, for |t < NZ,
y(t) =

0, for [t > NI,
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Uncertainty Principle (Theory)

Fundamental Relation: At «— Aw
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@ N cycle example = general truth

@ Aw ~ first 0’s of Y(w):

w—wo l o w
o —:tN = Aw~w wo—N

Ncycle = At~ NT = N2—7r
wo

= AtAw > 27

@ QM: "Heisenberg Uncertainty Principle”



Wave Packet Assessment (before break)

Example
Given three wave packets:

w(t) =e 2 yo(t) =sin(8t)e /2, ya(t) = (1 t2) e /2

For each wave packet:

@ Estimate the width At. A good measure might be the full
width at half-maxima (FWHM) of |y(t)|.

@ Evaluate and plot the Fourier transform Y(w).

© Estimate the width Aw of the transform. A good measure
might be the full width at half-maxima of | Y (w)].

© Determine the constant C for the uncertainty principle

At Aw > 27C.
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Aside: Wavelet Precursor Sets Stage

Colored Boxes — Wlndows w(t)
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o 1 2 3 4 5 s 7 &
@ Seen: sin nwt J all t's @ = FT short time interval
@ Overlap = correlated @ Boxes = windows =w(t)
@ Dependent components 0 = Y. (w),Yr(w),...Yry(w)
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@ ~ Short-time FT

@ Wavelet localized in t
@ = Own window

@ Oscillations = Aw

@ Y =amt s -(t) in y(t)

(wavelet transform)

@ 7: time interval analyzed
@ s=scale =27 /w

@ f details = small s

@ Small scale = high w




Generating Wavelet Basis Functions

o s=1,t=D S=15G1=00
Y 00 |
-05
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-4 -2 0 2 4 6 8 10 -6 4 -2 0 2 4 6

@ V¥ = mother of ¢
@ Fixed # oscills; vary T, 0 @ Need fewer large s

@ s<,>1 — high, low w @ Small s: details

@ Large s: smooth envelope @ Need for hi resolution




Visualization: Transform of Chirp sin(60¢?)
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> y(t) (Transform)

(Inverse)

@ Convolute low
scale

@ Cover all

@ = Highres
@ Expand

@ = Shape
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Required of Mother Wavelet W

For Math to Work

Q@ V(t)is real
Q@ V(¢) oscillates around 0 such that the average
+o0
/ W(t)dt =0
© V(i) is local (wave packet) & square integrable
/m [W(t) dt < 0o

©Q The first p moments vanish (for details):

+oo +oo +oo
/ tO\U(t)dt:/ t1\ll(t)dt:---:/ ' w(t)dt=0

— o0 —oo




Implementation: Visualizing Wavelet Transforms

@ Convert your DFT program to a CWT one.
@ Examine different mother wavelets. Write methods for

@ a Morlet wavelet
@ a Mexican hat wavelet
© a Haar wavelet

© Test your transform on input:

Q@ y(t) =sin2xrt,
@ y(t) =25sin2nt + 6sin4xt + 10sin 67t,
© The nonstationary signal for our problem:

sin 2rt, for 0 <t<2,
y(t) = < 5sin2xt + 10 sin 4rt, for 2 <t <8,
2.5sin2nt + 6sin4rnt+ 10sin6rwt, for 8 <t <12.

©Q Invert your CWT & compare to input.
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