Continuous Wavelet Transforms Part I (Discrete to Follow)

Rubin H Landau

Sally Haerer, Producer-Director

Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu

with Support from the National Science Foundation

Course: Computational Physics II

Problem: Multiple Frequencies in Time

Non Stationary Signals

- Amount ω_i at each t?
- Δ number of ω 's in t

- Numerical signal OK
- Here analytic:

$$y(t) = \begin{cases} \sin 2\pi t, & \text{for } 0 \le t \le 2, \\ 5\sin 2\pi t + 10\sin 4\pi t, & \text{for } 2 \le t \le 8, \\ 2.5\sin 2\pi t + 6\sin 4\pi t + 10\sin 6\pi t, & \text{for } 8 \le t \le 12. \end{cases}$$

Why Not Fourier Analysis?

Fourier Limitation: amount of $sin(n\omega t)$ paflastimage No time resolution OK for stationary signals • Fourier: correlated ω_i 's Not OK for Problem Poor data compression; • Fourier: all ω_i all time recompute ci

Wavelets in a Nutshell

Three Wavelet Examples

- Extend Fourier
- Nonstationary signals
- Fairly recent
- Extensive applications
- E.g.: all oscillate

- Varied functional forms
- Wavelet basis expansion
- "let": small wave (pack)
- Each: finite & △ T
- Each: center different t

Wave Packets $= \sum$ Waves

Wave Packet e.g. N Cycle Sine

- Packet \Rightarrow $y(t) = \text{pulse } \Delta t$ \Rightarrow $Y(\omega) = \text{pulse } \Delta \omega$

$$y(t) = \begin{cases} \sin \omega_0 t, & \text{for } |t| < N_{\frac{T}{2}}, \\ 0, & \text{for } |t| > N_{\frac{T}{2}}, \end{cases}$$

$$\Rightarrow \Delta t = NT = N \frac{2\pi}{\omega_0}, \qquad \Delta \omega \simeq \frac{\omega_0}{N}$$

Uncertainty Principle (Theory)

Fundamental Relation: $\Delta t \leftrightarrow \Delta \omega$

- N cycle example ⇒ general truth
- $\Delta\omega \simeq$ first 0's of $Y(\omega)$:

$$\frac{\omega - \omega_0}{\omega_0} = \pm \frac{1}{N} \quad \Rightarrow \quad \Delta\omega \simeq \omega - \omega_0 = \frac{\omega_0}{N}$$

N cycle
$$\Rightarrow \Delta t \simeq NT = N \frac{2\pi}{\omega_0}$$

$$\Rightarrow \Delta t \Delta \omega \geq 2\pi$$

QM: "Heisenberg Uncertainty Principle"

Wave Packet Assessment (before break)

Example

Given three wave packets:

$$y_1(t) = e^{-t^2/2}, \quad y_2(t) = \sin(8t)e^{-t^2/2}, \quad y_3(t) = (1 - t^2)e^{-t^2/2}$$

For each wave packet:

- Estimate the width Δt . A good measure might be the *full* width at half-maxima (FWHM) of |y(t)|.
- ② Evaluate and plot the Fourier transform $Y(\omega)$.
- **3** Estimate the width $\Delta \omega$ of the transform. A good measure might be the *full width at half-maxima* of $|Y(\omega)|$.
- Determine the constant C for the uncertainty principle

$$\Delta t \Delta \omega \geq 2\pi C$$
.

Continuous Wavelet Transforms Part II (Discrete to Follow)

Rubin H Landau

Sally Haerer, Producer-Director

Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu

with Support from the National Science Foundation

Course: Computational Physics II

Aside: Wavelet Precursor Sets Stage

Colored Boxes \rightarrow Windows w(t)

• Seen: $\sin n\omega t \exists \text{ all } t$'s

⇒ FT short time interval

Overlap ⇒ correlated

• Boxes = windows = w(t)

Dependent components

 $\bullet \Rightarrow Y_{\tau_1}(\omega), Y_{\tau_2}(\omega), \ldots Y_{\tau_N}(\omega)$

$$Y^{(ST)}(\omega,\tau) = \int_{-\infty}^{+\infty} dt \, e^{i\omega t} \, w(t-\tau) \, y(t)$$

The Wavelet Transform

$$Y(\omega): \exp(i\omega t) \rightarrow Y(s,\tau): \psi_{s,\tau}(t)$$

$$Y(s, \tau) = \int^{+\infty} dt \; \psi_{s, \tau}^*(t) \; y(t)$$

(wavelet transform)

- Wavelet localized in t
- ⇒ Own window
- Oscillations $\Rightarrow \Delta \omega$
- Y = amt $\psi_{s,\tau}(t)$ in y(t)

- τ: time interval analyzed
- $s = \text{scale} = 2\pi/\omega$
- t details \Rightarrow small s
- Small scale \Rightarrow high ω

Generating Wavelet Basis Functions

Scale by s, Translate by
$$\tau$$
: $\psi_{s,\tau}(t) = \frac{1}{\sqrt{s}} \Psi\left(\frac{t-\tau}{s}\right)$

- Ψ = mother of ψ
- Fixed # oscills; vary T, 0
- $s < , > 1 \rightarrow \text{high, low } \omega$
- Large s: smooth envelope

- Need fewer large s
- Small s: details
- Need for hi resolution

Visualization: Transform of Chirp $\sin(60t^2)$

$$Y(s,\tau) = \frac{1}{\sqrt{s}} \int_{-\infty}^{+\infty} dt \ \Psi^* \left(\frac{t-\tau}{s} \right) \ y(t)$$
 (Transform)

$$y(t) = \frac{1}{C} \int_{-\infty}^{+\infty} d\tau \int_{0}^{+\infty} \frac{ds}{s^{3/2}} \psi_{s,\tau}^{*}(t) Y(s,\tau) \qquad \text{(Inverse)}$$

Solution to Problem

Required of Mother Wavelet Ψ

For Math to Work

- $\mathbf{0} \ \Psi(t)$ is real
- $\Psi(t)$ oscillates around 0 such that the average

$$\int_{-\infty}^{+\infty} \Psi(t) \, dt = 0$$

Φ(t) is local (wave packet) & square integrable

$$\int_{-\infty}^{+\infty} |\Psi(t)|^2 dt < \infty$$

The first p moments vanish (for details):

$$\int_{-\infty}^{+\infty} t^{0} \Psi(t) dt = \int_{-\infty}^{+\infty} t^{1} \Psi(t) dt = \dots = \int_{-\infty}^{+\infty} t^{p-1} \Psi(t) dt = 0$$

Implementation: Visualizing Wavelet Transforms

Example

- Convert your DFT program to a CWT one.
- 2 Examine different mother wavelets. Write methods for
 - a Morlet wavelet
 - a Mexican hat wavelet
 - a Haar wavelet
- Test your transform on input:

 - $y(t) = 2.5 \sin 2\pi t + 6 \sin 4\pi t + 10 \sin 6\pi t$
 - 3 The nonstationary signal for our problem:

$$y(t) = \begin{cases} \sin 2\pi t, & \text{for } 0 \le t \le 2, \\ 5\sin 2\pi t + 10\sin 4\pi t, & \text{for } 2 \le t \le 8, \\ 2.5\sin 2\pi t + 6\sin 4\pi t + 10\sin 6\pi t, & \text{for } 8 \le t \le 12. \end{cases}$$

Invert your CWT & compare to input.