Heat Flow via Crank—Nicolson

An Improved Leap Frog

Rubin H Landau

Sally Haerer, Producer-Director
Based on A Survey of Computational Physics by Landau, Paez, & Bordeianu

with Support from the National Science Foundation

Course: Computational Physics Il

Problem: How Does a Bar Cool?

0 100 K 0 O

- > —= W =
Insulated Metallic Bar Touching Ice

@ Aluminum bar, L = 1 m, w along x

@ Insulated along length, ends iniice (T = 0C)

@ Initially T =100C

@ How does temperature vary in space and time?

CN Improved Algorithm: Splitt Step = 9; FD — CD

@ Split time step for 0; at t + At/2

+ O(AP) (1)

oT (X,H— g) - T(x,t+AAt3‘f T(x,t)

@ Bad as FD for t = t + At, Good at { + At/2
@ CDd2att=t+At/2

2T At 1
7 (“ u ?) = 2(axE * @

[T(x — Ax, t+ At)+ T(x+ Ax, t+ At) — 2T(x, t + At)

+T(x — Ax, t) 4+ T(x + Ax, t) — 2T(x, t) + O(AX?)

3/1

Split-Time Discrete Form of Heat Equation

Derivatives in Terms of Differences

oT(x,t) K &T(x,1)

ot ~ Cp 0x2 ®)

Tijer = Tig = 2 [Timtjer = 2Tijen + Tisrjor + Ticty = 2Tij+ Tia] (4)
2

X — iAx, t —jAt, n = C’;ﬁ; (5)

e Future in terms of present (grid values only, yet mid time):
2 2
= Uii=, fui <77 +2> Tijj1 — Tir,j1 = Tica,j + <;] *2> Ti,j+ Ti1,j (6)

e Implicit solution: solve all lattice sites simultaneously

e Leap frog = explicit, permits single time step

Arrange Discrete Heat Equation as Matrix Equation

(2+2 —1
—1 (2+2 —1
—1 (%+2) —1

LHS future T's =/ + 1

RHS present T’s =

RHS ends @ future, OK as BC
IC:j =0, hot bar, cold ends

Solve matrix — j =1 all x=i

Th Tojut +Toj+ (2 =2)Tyj+ To
T2,j41 T+ (2 —2)Tp+ T
T3,j+1 T+ (% —2) T3+ Ty

@ Advance t, repeat step
@ C-N = 1 precise, stable, work
@ vonN stability: all A, Ax OK:

1 —2ysin®(kAx/2)

Stk) = 1+ 2nsin?(kAx/2)

Special Solution of Tridiagonal Matrix Equations ©

dy cy 0 0 0 Xq by

ap do c 0 . S S 0 X2 by

0 as ds c3 A L . 0 X3 _ b

0 0 0 0 ay_1 dy—1 CN_1 XN;1 bN;1

0 0 0 0 0 ay dy X by
e Libes good for stnd linear eq @ A;; = N words, access

[Alx=b @ Tridiagonal = only 3 vectors

@ Yet [A] = tridiagonal {di}icy ns (G} i v (@it ici

@ = 3 more robust, faster solution ¢ Single subscript = 3N — 2

Soltn: Coef matrix — upper triangular, diagonals =1

@ Start: divide 1st eqtn by dj, subtract a> x 1st eqtn:

C-
1 i 0 0 .0 by
i Xq 9
0 dzf% S X | = b2—a§f1
0 as d3 ¢ - 0 X3

@ Next: divide 2nd eqtn by 2nd diagonal element

g 0 0 0 o
1
X
0 1 % 5 0 0 1 by
d—a g x| =| b2—%q
0 ag ds o 0 X3 42—32%

@ Repeat steps — upper triangular form

1 M 0 0 s 0 Xq Py
(0 1 T X . .) (Xz)) (pz)
o0 0 1 h -~ O X3 P3
@ Back substitution =- explicit solution:

Xi=pj —hixi_q; i=n—-1,n-2,..., 1, xy=pN

Crank—Nicolson Implementation

HeatCNTridiag.py
B

@ Solve C-N linear equations using libe, esp for tridiagonal
© Check stability for Ax and At
© Contoured surface plot of T(x, t)

© Compare precision and speed: leap-frog vs
Crank—Nicolson

© Assume stable, very small At = accurate

../../../html/HeatCNTridiag.html

	Title

