Welcome to Computational Science I Scientific Computing II

informal introductions

Rubin H Landau

Head, Computational Physics for Undergraduate BS Degree Program at Oregon State University

with Sally Haerer

Director/Producer/Editor

Computational Science I Scientific Computing II

(Dept S C)

- How use computers to do science, engineering
- II: Assume know way around keyboard
- II: Assume compiled language (Java)
- I: A First Course in Scientific Computing Princeton University Press, 2006
- I \Rightarrow this course \Rightarrow Computational X (\uparrow X)
- Lectures ← text: Landau, Paez, Bordeianu
 A Survey of Computational Physics _____
 Princeton University Press, 2008

How to Use these Lectures

- As always, before/after reading text (> lectures)
- Web based, universal, flash-enabled browser
- View, listen, take anywhere; podcast
- Table Contents below
- Stop, replay parts; jump around
- Tired of my voice: headphones
- Adjust volume: computer controls
- Links: codes, animations, color viz,...
- Real practitioner ≠ news reader (±)
- Carefully planned, not scripted ≤ boring
- Accessible slide (LaTeX) rubin@science.oregonstate.edu
- Distance Ed technology ⇒ closer to profs, increase access

Philosophy, Local Setup

- Attitude: Learn computation by/while computing
- + Motivate: science, math, creativity: do practical applications
- # Theory of scientific computation
- # UG black box; look in box, get hands dirty
- Compiled language: closer to algorithms, math
- Sample codes ⇒ t extend, explore (realistic)
- Loaded computer (lab) and projects ⇒ material = yours
 - Java Developer's Kit + shell, others OK (free)
 - Java: excellent for UG; Research: C(++), Fortran95 (codes)
 - Gnuplot, AceGr, PtPlot, OpenDX*, JAMA (matrix libe)
 - jEdit, shell, Emacs, (studio)
- When, where, meet, which computers?
- How, when assignments, exams?
- e.g.: link to my class pages

Nature of Computational Science

- Paradigm shift doing science
- Teach: Explore models, solve problems
- Understand depths > otherwise possible
- Difficult, complex problems
 - ⇒ beyond analytic solution
 - ⇒ human endurance
- Computer = Σ
 - super-calculating machine
 - lab: numerical simulation world
 - lever for our intellectual abilities

What is Computational Science?

• CX (CSE): <u>multi</u>-discipline, bridge

CSE focus: science problems + computers

common techniques, philosophy

- vs subspecialization
- Computer Science (CS) focus:
 - computing for its own intrinsic interest
 - develop hardware and software tools
- Not just semantics:
- CSE: "tomorrow's problems yesterday's computers
- CS: ... other way around"

Problem-Solving Paradigm (Viewpoint: Course, Text)

Course Topics (Tools, 1/3 Text)

- 1. Intro & Computational Basics
- 2. Errors & Uncertainties in Computations
- 3. Trial & Error Searching
- 4. Visualization, Object-Oriented Programming
- 5. Monte Carlo Simulations
- 6. Matrix Computing, Scientific Libraries
- 7. Computer Hardware & Tuning*
- 8. Integration & Differentiation
- 9. Data Fitting
- 10. Differential Equations

Good Bye for Now

