Thermodynamic Magnetic Simulations Ising Model with Metropolis Algorithm

Rubin H Landau

Sally Haerer, Producer-Director

Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu

with Support from the National Science Foundation

Course: Computational Physics II

Problem: Explain Thermal Behavior of Ferromagnets

What are Magnets and How Do They Behave?

- ullet Ferromagnets $=\sum$ finite domains
- Domain: all atoms' spins aligned
- External \vec{B} : align domains \Rightarrow magnetized
- T ↑: ∑ magnetism ↓ (spins flip?)
- @ T_{curie} : phase transition, $\vec{M} = 0$
- Explain more than usual

Ising Model: N Magnetic Dipoles on Linear Chain

Constrained Many Body Quantum System

- Same model 2-D, 3-D
- Fixed ⇒ no movements
- Spin dynamics

- Particle i, spin
- $s_i \equiv s_{z,i} = \pm \frac{1}{2}$
- Ψ: N spin values

$$|\alpha_{j}\rangle = |s_{1}, s_{2}, \dots, s_{N}\rangle = \left\{\pm \frac{1}{2}, \pm \frac{1}{2}, \dots \right\}, \quad j = 1, \dots, 2^{N}$$

Ising Model Continued

Quantum Interaction of N Magnetic Dipoles

- $s_i = \uparrow, \downarrow \Rightarrow 2^N$ states
- Fixed ⇒ no exchange
- Energy: $\vec{\mu} \cdot \vec{\mu} + \vec{\mu} \cdot \vec{B}$
- J = exchange energy

$$V_i = -J \vec{s}_i \cdot \vec{s}_{i+1} - g \mu_b \, \vec{s}_i \cdot \vec{B}$$

- J > 0: ferromagnet $\uparrow \uparrow \uparrow$
- J < 0: antiferromagnet $\uparrow \downarrow \uparrow \downarrow$
- g = gyromagnetic ratio
- \bullet $\vec{J}=g\vec{\mu}$
- $\mu_b = e\hbar/(2m_ec)$

Many Body Problem ($N \ge 2,3$ Unsolved)

Beyond N = 2, 3 Use Statistics, Approximations

- $2^{N} \rightarrow large (2^{20} > 10^{6})$
- 10²³: hah!
- $B_{ext} \rightarrow 0 \Rightarrow \text{no direction}$
- $\Rightarrow \langle \vec{M} \rangle = 0$
- Yet spins aligned??
- Spontaneous reversal

$$E_{\alpha_k} = -J \sum_{i=1}^{N-1} s_i s_{i+1} - B\mu_b \sum_{i=1}^{N} s_i$$

- Not equilibrium approach
- Curie Temperature: $\vec{M}(T > T_c) \equiv 0$
- T < T_c: quantum macroscopic order
- 1D: no phase transition

Statistical Mechanics (Theory)

Microscopic Origin of Thermodynamics

- Basis: all configurations < constraints possible
- Microcanonical Ensemble: energy fixed
- Canonical Ensemble: (here) T, V, N fixed, not E
- "At temperature T": equilibrium $\langle E \rangle \propto T$
- Equilibrium ⇒ static ⇒ continual random fluctuates
- Canonical ensemble: E_{α} vary via Boltzmann (k_{B}):

$$\overbrace{ \ \ }^{E=-J} \qquad \qquad \downarrow \qquad \downarrow \qquad \underbrace{ \ \ \ \ }_{E=-J}$$

$$\mathcal{P}(E_{\alpha}, T) = \frac{e^{-E_{\alpha}/k_{B}T}}{Z(T)}$$
$$Z(T) = \sum e^{-E_{\alpha}/k_{B}T}$$

$$Z(T) = \sum_{\alpha} e^{-E_{\alpha}/k_{B}T}$$

• Sum: individual states, not $g(E_{\alpha})$ weighted sum

Analytic Solutions $N \to \infty$ Ising Model

1-D Ising

$$U = \langle E \rangle \tag{1}$$

$$\frac{U}{J} = -N \tanh \frac{J}{k_B T} = -N \frac{e^{J/k_B T} - e^{-J/k_B T}}{e^{J/k_B T} + e^{-J/k_B T}} = \begin{cases} N, & k_B T \to 0, \\ 0, & k_B T \to \infty \end{cases}$$
(2)

$$M(k_BT) = \frac{Ne^{J/k_BT} \sinh(B/k_BT)}{\sqrt{e^{2J/k_BT} \sinh^2(B/k_BT) + e^{-2J/k_BT}}}.$$
 (3)

2-D Ising

$$\mathcal{M}(T) = \begin{cases} 0, & T > T_c \\ \frac{(1+z^2)^{1/4}(1-6z^2+z^4)^{1/8}}{\sqrt{1-z^2}}, & T < T_c, \end{cases}$$
(4)

$$kT_c \simeq 2.269185J, \quad z = e^{-2J/k_BT},$$
 (5)

Metropolis Algorithm (A Top 10 Pick)

Basic Concepts (Mystery That It Works)

- Boltzmann ⇒ system remain lowest E state
- Boltzmann \Rightarrow higher E less likely than lower E
- T → 0: only lowest E
- Finite T: $\Delta E \sim k_B T$ fluctuations \sim equilibrium
- Metropolis, Rosenbluth, Teller & Teller: n transport
- Clever way improve Monte Carlo averages
- Simulates thermal equilibrium fluctuations
- Randomly change spins, ⟨follows⟩ ≃ Boltzmann
- Combo: variance reduction & von Neumann rejection

Metropolis Algorithm Implementation

Number of Steps, Multiple Paths to Equilibrium Configuration

- Start: fixed T, arbitrary $\alpha_k = \{s_1, s_2, \dots, s_N\}, E_{\alpha_k}$
- 2 Trial: flip random spin(s), calculate E_{trial}
- **3** If $E_{trial} \leq E_{\alpha_k}$, accept: $\alpha_{k+1} = \alpha_{trial}$
- If $E_{trial} > E_{\alpha_k}$, accept + relative probable $\mathcal{R} = e^{-\frac{\Delta E}{k_B T}}$:
 - Choose uniform $0 < r_i < 1$
 - Set $\alpha_{k+1} = \begin{cases} \alpha_{trial}, & \text{if } \mathcal{R} \geq r_j \text{ (accept)}, \\ \alpha_k, & \text{if } \mathcal{R} < r_i \text{ (reject)}. \end{cases}$
- Iterate, equilibrate (wait ≃10N)
- **1** Physics = fluctuations $\rightarrow M(T)$, U(T)
- Change T, repeat

Metropolis Algorithm Implementation (IsingViz.py)

- Hot start: random
- Cold start: parallel, anti
- > 10N iterates no matter
- More averages better
- Data structure = s[N]
- Print +, ea site
- Periodic BC

- 1st $J = k_B T = 1$, $N \le 20$
- Watch equilibrate: △ starts
- Large flucts: ↑ T, ↓ N
- Large k_BT : instabilities
- Small k_BT : slow equilibrate
- Domain formation & total E
 (E > 0: ↑↓, ↓↑)

Calculate Thermodynamic Properties

Average in Equilibrium 100 spins

$$E_{lpha_j} = -J\sum_{i=1}^{N-1} s_i s_{i+1}, \qquad \mathcal{M}_j = \sum_{i=1}^N s_i, \qquad C_{simple} = rac{1}{N}rac{d\langle E
angle}{dT}$$

$$\mathcal{M}_j = \sum_{i=1}^N s_i,$$

$$C_{simple} = \frac{1}{N} \frac{d\langle E \rangle}{dT}$$

•
$$\vec{M}(k_bT \to \infty) \to 0$$

$$\bullet \ \vec{M}(k_bT \to 0) \to N/2$$

Get to Work!