Partial Differential Equations (PDEs) Introductory Generalities

Rubin H Landau

Sally Haerer, Producer-Director

Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu

with Support from the National Science Foundation

Course: Computational Physics II

4 E 5

When Ordinary?, When Partial?

- Field U(x, y, z, t) describe
- Physical quantities (T, P) vary continuously in x & t
- Changes in U(x, y, z, t) affect U nearby
- \Rightarrow Dynamic equations in partial derivatives: PDEs
- vs Ordinary differential equations

General Forms of PDES

$$A \frac{\partial^2 U}{\partial x^2} + 2B \frac{\partial^2 U}{\partial x \partial y} + C \frac{\partial^2 U}{\partial y^2} + D \frac{\partial U}{\partial x} + E \frac{\partial U}{\partial y} = F$$

$$\boxed{\begin{array}{c|c} Elliptic & Parabolic & Hyperbolic \\ \hline d = AC - B^2 > 0 & d = AC - B^2 = 0 & d = AC - B^2 < 0 \\ \nabla^2 U(x) = -4\pi\rho(x) & \nabla^2 U(\mathbf{x}, t) = a \frac{\partial U}{\partial t} & \nabla^2 U(\mathbf{x}, t) = c^{-2} \frac{\partial^2 U}{\partial t^2} \\ \hline Poisson's & Heat & Wave \end{array}}$$

- Elliptic PDE: All 2nd O, same signs
- Parabolic PDE: 1st-O derivative + 2nd O
- Hyperbolic PDE: All 2nd O, opposite signs

Relation Boundary Conditions & Uniqueness

Boundary	Elliptic	Hyperbolic	Parabolic
Condition	(Poisson)	(Wave)	(Heat)
Dirichlet open S	Under	Under	Unique & stable (1-D)
Dirichlet closed S	Unique & stable	Over	Over
Neumann open S	Under	Under	Unique & Stable (1-D)
Neumann closed S	Unique & stable	Over	Over
Cauchy open S	Nonphysical	Unique & stable	Over
Cauchy closed S	Over	Over	Over

- Initial Conditions (x(0), x'(0),...): always requisite
- Boundary Conditions: sufficient for unique solution
- Dirichlet: value on surrounding closed S
- Neumann: value normal derivative on surrounding S
- Cauchy: both solution & derivative on closed boundary = ??

Solving PDEs & ODEs Is Different

No Standard PDE Solver

Standard form for ODE

$$\frac{d\mathbf{y}(t)}{dt} = \mathbf{f}(\mathbf{y}, t)$$

- Single independent variable \Rightarrow standard algorithm (rk4)
- PDEs: several independent variables: $\rho(x, y, z, t)$
- ⇒ Complicated: algorithm simultaneously, independently
- More variables \Rightarrow more equations \Rightarrow > ICs, BCs
- Each PDE: particular BCs \Rightarrow particular algorithm