The Chaotic Pendulum II Implementation & Assessment

Rubin H Landau

Sally Haerer, Producer-Director

Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu

with Support from the National Science Foundation

Course: Computational Physics II

Implementation: Let's Get Down to Work

Good Time for a Break!

Examples of What You Should See

Applets of Pendulums in Phase Space (Hans Kowallik)

- Do with your program (text path)
- Reproduce standard features
- Beware: 4-D parameter space

- Complicated Behavior Applet
- Chaos Comparison Applet

Assessment in Phase Space

Start with Free Pendulum As Your Lab

- Add friction: spirals
- Small τ_{ext} (~ellipse)
- $\omega \simeq \omega_0$, beats
- NL resonance (ϕ matters)
- ID transients, 1, 2, 3 cycle
- ID running solutions
- Explore chaos (small h)
- ID hypersensitive details
- OK not reproduce us

Bifurcations of Chaotic Pendulum

How & When Do ω_i s Occur?

- Saw bugs bifurcate
- Saw pendulum jump ω_i
- $\Rightarrow \omega_i$ sequential
- Linear: ω_i simultaneous
- For 150 t_i plot (|θ(t_i)|, f)
- Samples instantaneous $\dot{\theta} = d\theta/dt$
- Dominant $\omega_i =$ attractors

That's All Folks

See Double Pendulum for Alternate problem.

