Shock Waves \& Solitons PDE Waves; Oft-Left-Out; CFD to Follow

Rubin H Landau

Sally Haerer, Producer-Director
Based on A Survey of Computational Physics by Landau, Páez, \& Bordeianu with Support from the National Science Foundation
\section*{Course: Computational Physics II}

Problem：Explain Russel＇s Observation

1834，J．Scott Russell，Edinburgh－Glasgow Canal

＂I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses，when the boat suddenly stopped－not so the mass of water in the channel which it had put in motion；it accumulated round the prow of the vessel in a state of violent agitation，then suddenly leaving it behind，rolled forward with great velocity，assuming the form of a large solitary elevation，a rounded，smooth and well－defined heap of water， which continued its course along the channel apparently without change of form or diminution of speed．I followed it on horseback，and overtook it still rolling on at a rate of some eight or nine miles an hour，preserving its original figure some thirty feet long and a foot to a foot and a half in height．Its height gradually diminished，and after a chase of one or two miles I lost it in the windings of the channel．Such，in the month of August 1834，was my first chance interview with that singular and beautiful phenomenon．．．．＂

Problem: Explain Russel's Soliton Observation

J. Scott Russell, 1834, Edinburgh-Glasgow Canal

- We extend PDE Waves; You see String Waves 1st
- Extend: nonlinearities, dispersion, hydrodynamics
- Fluids, old but deep \& challenging
- Equations: complicated, nonlinear, unstable, rare analytic
- Realistic BC \neq intuitive (airplanes, autos)
- Solitons: computation essential, modern study

Theory: Advection = Continuity Equation

Simple Fluid Motion

- Continuity equation = conservation of mass

$$
\begin{align*}
\frac{\partial \rho(\mathbf{x}, t)}{\partial t}+\vec{\nabla} \cdot \mathbf{j} & =0 \tag{1}\\
\mathbf{j}(\mathbf{x}, t) & \stackrel{\text { def }}{=} \rho \mathbf{v}=\text { current } \tag{2}
\end{align*}
$$

- $\rho(\mathbf{x}, t)=$ mass density,$\quad \mathbf{v}(\mathbf{x}, t)=$ fluid velocity
- $\vec{\nabla} \cdot \mathbf{j}=$ "Divergence" of current $=$ spreading
- $\Delta \rho$: in + out current flow
- Advection Equation, 1-D flow, constant $v=c$:

$$
\begin{equation*}
\frac{\partial \rho(x, t)}{\partial t}+c \frac{\partial \rho(x, t)}{\partial x}=0 \tag{3}
\end{equation*}
$$

Solutions of Advection Equation

1st Derivative Wave Equation

$$
\frac{\partial \rho(x, t)}{\partial t}+c \frac{\partial \rho(x, t)}{\partial x}=0
$$

- "Advection" $\stackrel{\text { def }}{=}$ transport salt from thru water due to \vec{v} field
- Solution: $u(x, t)=f(x-c t)=$ traveling wave
- Surfer rider on traveling wave crest
- Constant shape \Rightarrow

$$
x-c t=\text { constant } \Rightarrow x=c t+C \quad \Rightarrow \text { Surfer speed }=d x / d t=c
$$

- Can leapfrog, not for shocks

Extend Theory: Burgers' Equation

Wave Velocity \propto Amplitude

$$
\begin{align*}
\frac{\partial u}{\partial t}+\epsilon u \frac{\partial u}{\partial x} & =0 \tag{1}\\
\frac{\partial u}{\partial t}+\epsilon \frac{\partial\left(u^{2} / 2\right)}{\partial x} & =0 \quad \text { (Conservative Form) } \tag{2}
\end{align*}
$$

- Advection: all points @ c \Rightarrow constant shape
- Burgers: larger amplitudes faster \Rightarrow shock wave

Lax-Wendroff Algorithm for Burgers' Equation

AppletGoing Beyond CD for Shocks

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+\epsilon \frac{\partial\left(u^{2} / 2\right)}{\partial x}=0 \quad \text { (Conservative Form) } \\
& u(x, t+\Delta t)=u(x, t-\Delta t)-\beta\left[\frac{u^{2}(x+\Delta x, t)-u^{2}(x-\Delta x, t)}{2}\right] \\
& \beta=\frac{\epsilon}{\Delta x / \Delta t}= \text { measure nonlinear }<1 \quad \text { (stable) } \\
& u(x, t+\Delta t) \simeq u(x, t)+\frac{\partial u}{\partial t} \Delta t+\frac{1}{2} \frac{\partial^{2} u}{\partial t^{2}} \Delta t^{2} \\
& u_{i, j+1}= u_{i, j}-\frac{\beta}{4}\left(u_{i+1, j}^{2}-u_{i-1, j}^{2}\right)+\frac{\beta^{2}}{8}\left[\left(u_{i+1, j}+u_{i, j}\right)\left(u_{i+1, j}^{2}-u_{i, j}^{2}\right)\right. \\
&\left.\quad-\left(u_{i, j}+u_{i-1, j}\right)\left(u_{i, j}^{2}-u_{i-1, j}^{2}\right)\right]
\end{aligned}
$$

Burger's Assessment

See CODE

(1) Solve Burgers' equation via leapfrog method
(2) Study shock waves
((Modify program to Lax-Wendroff method
(9) Compare the leapfrog and Lax-Wendroff methods
(0) Explore Δx and Δt
(0) Check different β for stability
(3) Separate numerical and physical instabilities

Dispersionless Propagation

Meaning of Dispersion?

- Dispersion $\nRightarrow E$ loss, Dispersion \Rightarrow information loss
- Physical origin: propagate spatially regular medium
- Math origin: higher-order ∂_{x}
- $u(x, t)=e^{i(k x \mp \omega t)}=\mathrm{R} / \mathrm{L}$ "traveling" plane wave
- Dispersion Relation: sub into advection equation

$$
\begin{align*}
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x} & =0 \tag{1}\\
\Rightarrow \quad \omega & = \pm c k \quad \text { (dispersionless propagation) } \tag{2}\\
v_{g} & =\frac{\partial \omega}{\partial k}=\quad \text { group velocity }= \pm c \quad \text { (linear) } \tag{3}
\end{align*}
$$

Including Dispersion (Wave Broadening)

Small-Dispersion Relation $w(k)$

- $\omega=c k=$ dispersionless

$$
\begin{align*}
\omega & \simeq c k-\beta k^{3} \tag{1}\\
v_{g} & =\frac{d \omega}{d k} \simeq c-3 \beta k^{2} \tag{2}
\end{align*}
$$

- Even powers \rightarrow R-L asymmetry in v_{g}
- Work back to wave equation, $k^{3} \Rightarrow \partial_{x}^{3}$:

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}+c \frac{\partial u(x, t)}{\partial x}+\beta \frac{\partial^{3} u(x, t)}{\partial x^{3}}=0 \tag{3}
\end{equation*}
$$

Korteweg \& deVries (KdeV) Equation, 1895

$$
\frac{\partial u(x, t)}{\partial t}+\varepsilon u(x, t) \frac{\partial u(x, t)}{\partial x}+\mu \frac{\partial^{3} u(x, t)}{\partial x^{3}}=0
$$

- Nonlinear $\varepsilon u \partial u / \partial t \rightarrow$ sharpening \rightarrow shock
- $\partial^{3} u / \partial x^{3} \rightarrow$ dispersion
- Stable: dispersion \simeq shock; (parameters, IC)
- Rediscovered numerically Zabusky \& Kruskal, 1965
- 8 Solitons, larger = faster, pass through each other!

Analytic Soliton Solution

Convert Nonlinear PDE to Linear ODE

- Guess traveling wave \rightarrow solvable ODE

$$
\begin{align*}
0 & =\frac{\partial u(x, t)}{\partial t}+\varepsilon u(x, t) \frac{\partial u(x, t)}{\partial x}+\mu \frac{\partial^{3} u(x, t)}{\partial x^{3}} \tag{1}\\
u(x, t) & =u(\xi=x-c t) \tag{2}\\
\Rightarrow \quad 0 & =\frac{\partial u}{\partial \xi}+\epsilon u \frac{\partial u}{\partial \xi}+\mu \frac{d^{3} u}{d \xi^{3}} \tag{3}\\
\Rightarrow \quad u(x, t) & =\frac{-c}{2} \operatorname{sech}^{2}\left[\frac{1}{2} \sqrt{c}\left(x-c t-\xi_{0}\right)\right] \tag{4}
\end{align*}
$$

- sech $^{2} \Rightarrow$ solitary lump

Algorithm for KdeV Solitons

CD for $\partial_{t}, \partial_{x} ; 4$ points ∂_{x}^{3}

$$
\begin{aligned}
u_{i, j+1} \simeq & u_{i, j-1}-\frac{\epsilon}{3} \frac{\Delta t}{\Delta x}\left[u_{i+1, j}+u_{i, j}+u_{i-1, j}\right]\left[u_{i+1, j}-u_{i-1, j}\right] \\
& -\mu \frac{\Delta t}{(\Delta x)^{3}}\left[u_{i+2, j}+2 u_{i-1, j}-2 u_{i+1, j}-u_{i-2, j}\right]
\end{aligned}
$$

- IC + FD to start (see text)
- Truncation error \& stability:

$$
\begin{aligned}
& \mathcal{E}(u)=\mathcal{O}\left[(\Delta t)^{3}\right]+\mathcal{O}\left[\Delta t(\Delta x)^{2}\right] \\
& \frac{1}{(\Delta x / \Delta t)}\left[\epsilon|u|+4 \frac{\mu}{(\Delta x)^{2}}\right] \leq 1
\end{aligned}
$$

Implementation: KdeV Solitons

- Bore \rightarrow solitons
- Solitons crossing
- Stability check
- Solitons in a box

