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Problem: Explain Russel’s Observation =3

1834, J. Scott Russell, Edinburgh-Glasgow Canal

“I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped—not so
the mass of water in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of
form or diminution of speed. | followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a half in height. Its height
gradually diminished, and after a chase of one or two miles | lost it in the
windings of the channel. Such, in the month of August 1834, was my first
chance interview with that singular and beautiful phenomenon. ...




Problem: Explain Russel’'s Soliton Observation

J. Scott Russell, 1834, Edinburgh-Glasgow Canal

We extend PDE Waves; You see String Waves 1st

@ Extend: nonlinearities, dispersion, hydrodynamics

Fluids, old but deep & challenging

Equations: complicated, nonlinear, unstable, rare analytic

Realistic BC # intuitive (airplanes, autos)

Solitons: computation essential, modern study
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Theory: Advection = Continuity Equation

Simple Fluid Motion

@ Continuity equation = conservation of mass

ap(xv t) 7 ol —
5t +V-j=0 (1)
i(x, t) &t pVv = current 2)

@ p(x,t) = mass density, Vv(x, t) = fluid velocity
@ V -j = "Divergence" of current = spreading
@ Ap:in + out current flow

@ Advection Equation, 1-D flow, constant v = c:

op(xt)  p(x,1)
ot % ox

~0 (3)




Solutions of

1st Derivative Wave Equation

op(x.1) | Op(x.1)

ot ox O

@ "Advection" & transport salt from thru water due to Vv field

@ Solution: u(x,t) = f(x — ct) = traveling wave
@ Surfer rider on traveling wave crest

@ Constant shape =

x —ct=constant = x=ct+C = Surferspeed = dx/dt=c

@ Can leapfrog, not for shocks




Extend Theory: Burgers’ Equation

ou ou

E + eU 5 = 0 (1)
ou o?/2) .
ot +e ax 0 (Conservative Form) 2

@ Advection: all points @ ¢ = constant shape
@ Burgers: larger amplitudes faster = shock wave




Lax—Wendroff Algorithm for Burgers’ Equation

EEEGoing Beyond CD for Shocks

ou  9(u?/2)
ot ox

=0 (Conservative Form)

U(x.t 4 AY) :u(X,t,At),g{UZ(X‘FAXJ);UZ(X_A“)}

€

8= m = measure nonlinear < 1 (stable)
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At) ~ — A - —A
u(x,t+ At) ~u(x,t) + T t+ 5o t
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Uij+1 = Uij — f <Ui2+1,j - U:'2—1,j) + % [(Ui+1,f + Ui j) <Ui2+1,j - Uiz,/)
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Burger's Assessment

|
@ Solve Burgers’ equation via leapfrog method

© Study shock waves
© Modify program to Lax—Wendroff method

© Compare the leapfrog and Lax—Wendroff methods
@ Explore Ax and At
© Check different 3 for stability

@ Separate numerical and physical instabilities
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Dispersionless Propagation

Meaning of Dispersion?

@ Dispersion = E loss, Dispersion = information loss
@ Physical origin: propagate spatially regular medium
@ Math origin: higher-order 0y

@ u(x,t) = /Tl = R/L “traveling” plane wave

@ Dispersion Relation: sub into advection equation

ou ou
5t aF Ca =0 (1)
= w = *ck (dispersionless propagation) (2)
Vg = o group velocity = £c¢  (linear) (3)

Ok




Including Dispersion (Wave Broadening)

Small-Dispersion Relation w(k)
@ w = ck = dispersionless

w ~ ck — gk® (1)
. dw ~ 2
Vg = g = €30k )

@ Even powers — R-L asymmetry in vy

@ Work back to wave equation, k® = a2:

Au(x, t)

au(x,t) au(x,t)
+C
ox3

ot ox  TF

-0 3)




Korteweg & deVries (KdeV) Equation, 1895

87654 3 2 1

ou(x,t)
BarTa +eu(x,t)

au(x,t) ny

Pu(x, 1)
ox ox3

=0

Nonlinear cudu/ot —sharpening — shock

2%u/0x® — dispersion

Stable: dispersion ~ shock; (parameters, IC)
Rediscovered numerically Zabusky & Kruskal, 1965
@ 8 Solitons, larger = faster, pass through each other!



Analytic Soliton Solution

Convert Nonlinear PDE to Linear ODE

@ Guess traveling wave — solvable ODE

3
0= 73“(8’;’ D 4 eu(x, 1) 8u((9))(( 0,2 gﬁ(’; D
u(x,t) =u(§ =x—ct) (2)

= 0= 8U+ U@+ du
73 o¢ " Hae

= u(x,t) = _TCsech2 %ﬁ(x — ¢t — &) (4)

@ sech?® = solitary lump




Algorithm for KdeV Solitons

[U/+1/+U//+UI 1]][ul+1]_ul 1/]

e At
Upj1 = Ujj—1 — 3 Ax

A
— W 7(Axt)3 [Uit2,j +2Uj—1j — 2Ujt1,j — Uj—2,]]
@ IC + FD to start (see text)
@ Truncation error & stability:

E(u) = O[(A1)°] + O[At(Ax)?] ,

1 %
(w7 |+ e <




Implementation: KdeV Solitons

CODE
@ Bore — solitons
@ Solitons crossing

@ Stability check
@ Solitons in a box
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