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Problem: Explain Russel’s Observation

1834, J. Scott Russell, Edinburgh-Glasgow Canal
“I was observing the motion of a boat which was rapidly drawn along a

narrow channel by a pair of horses, when the boat suddenly stopped—not so
the mass of water in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of
form or diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a half in height. Its height
gradually diminished, and after a chase of one or two miles I lost it in the
windings of the channel. Such, in the month of August 1834, was my first
chance interview with that singular and beautiful phenomenon. . . .”

2 / 1



Problem: Explain Russel’s Soliton Observation

J. Scott Russell, 1834, Edinburgh-Glasgow Canal

We extend PDE Waves; You see String Waves 1st

Extend: nonlinearities, dispersion, hydrodynamics

Fluids, old but deep & challenging

Equations: complicated, nonlinear, unstable, rare analytic

Realistic BC 6= intuitive (airplanes, autos)

Solitons: computation essential, modern study
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Theory: Advection = Continuity Equation

Simple Fluid Motion

Continuity equation = conservation of mass

∂ρ(x, t)
∂t

+ ~∇ · j = 0 (1)

j(x, t) def
= ρ v = current (2)

ρ(x, t) = mass density, v(x, t) = fluid velocity

~∇ · j = "Divergence" of current = spreading

∆ρ: in + out current flow

Advection Equation, 1-D flow, constant v = c:

∂ρ(x , t)
∂t

+ c
∂ρ(x , t)
∂x

= 0 (3)
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Solutions of Advection Equation

1st Derivative Wave Equation

∂ρ(x , t)
∂t

+ c
∂ρ(x , t)
∂x

= 0

"Advection" def
= transport salt from thru water due to ~v field

Solution: u(x , t) = f (x − ct) = traveling wave

Surfer rider on traveling wave crest

Constant shape ⇒

x − ct = constant ⇒ x = ct + C ⇒ Surfer speed = dx/dt = c

Can leapfrog, not for shocks
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Extend Theory: Burgers’ Equation
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∂u
∂t

+ εu
∂u
∂x

= 0 (1)

∂u
∂t

+ ε
∂(u2/2)

∂x
= 0 (Conservative Form) (2)

Advection: all points @ c ⇒ constant shape
Burgers: larger amplitudes faster ⇒ shock wave
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Lax–Wendroff Algorithm for Burgers’ Equation

Going Beyond CD for Shocks

∂u
∂t

+ ε
∂(u2/2)

∂x
= 0 (Conservative Form)

u(x , t + ∆t) = u(x , t −∆t)− β
[

u2(x + ∆x , t)− u2(x −∆x , t)
2

]
β =

ε

∆x/∆t
= measure nonlinear < 1 (stable)

u(x , t + ∆t) ' u(x , t) +
∂u
∂t

∆t +
1
2
∂2u
∂t2 ∆t2

ui,j+1 = ui,j −
β

4

(
u2

i+1,j − u2
i−1,j

)
+
β2

8

[
(ui+1,j + ui,j )

(
u2

i+1,j − u2
i,j

)
−(ui,j + ui−1,j )

(
u2

i,j − u2
i−1,j

)]
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Burger’s Assessment

1 Solve Burgers’ equation via leapfrog method

2 Study shock waves
3 Modify program to Lax–Wendroff method

4 Compare the leapfrog and Lax–Wendroff methods

5 Explore ∆x and ∆t

6 Check different β for stability

7 Separate numerical and physical instabilities
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Dispersionless Propagation

Meaning of Dispersion?

Dispersion ; E loss, Dispersion⇒ information loss

Physical origin: propagate spatially regular medium

Math origin: higher-order ∂x

u(x , t) = ei(kx∓ωt) = R/L “traveling” plane wave

Dispersion Relation: sub into advection equation

∂u
∂t

+ c
∂u
∂x

= 0 (1)

⇒ ω = ± ck (dispersionless propagation) (2)

vg =
∂ω

∂k
= group velocity = ±c (linear) (3)
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Including Dispersion (Wave Broadening)

Small-Dispersion Relation w(k)

ω = ck = dispersionless

ω ' ck − βk3 (1)

vg =
dω
dk
' c − 3βk2 (2)

Even powers→ R-L asymmetry in vg

Work back to wave equation, k3 ⇒ ∂3
x :

∂u(x , t)
∂t

+ c
∂u(x , t)
∂x

+ β
∂3u(x , t)
∂x3 = 0 (3)
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Korteweg & deVries (KdeV) Equation, 1895
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∂u(x , t)
∂t

+ εu(x , t)
∂u(x , t)
∂x

+ µ
∂3u(x , t)
∂x3 = 0

Nonlinear εu ∂u/∂t →sharpening→ shock
∂3u/∂x3 → dispersion
Stable: dispersion ' shock; (parameters, IC)
Rediscovered numerically Zabusky & Kruskal, 1965
8 Solitons, larger = faster, pass through each other!
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Analytic Soliton Solution

Convert Nonlinear PDE to Linear ODE
Guess traveling wave→ solvable ODE

0 =
∂u(x , t)
∂t

+ εu(x , t)
∂u(x , t)
∂x

+ µ
∂3u(x , t)
∂x3 (1)

u(x , t) = u(ξ = x − ct) (2)

⇒ 0 =
∂u
∂ξ

+ ε u
∂u
∂ξ

+ µ
d3u
dξ3 (3)

⇒ u(x , t) =
−c
2

sech2
[

1
2
√

c(x − ct − ξ0)

]
(4)

sech2 ⇒ solitary lump
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Algorithm for KdeV Solitons

CD for ∂t , ∂x ; 4 points ∂3
x

ui,j+1 ' ui,j−1 −
ε

3
∆t
∆x

[ui+1,j + ui,j + ui−1,j ] [ui+1,j − ui−1,j ]

− µ ∆t
(∆x)3 [ui+2,j + 2ui−1,j − 2ui+1,j − ui−2,j ]

IC + FD to start (see text)

Truncation error & stability:

E(u) = O[(∆t)3] +O[∆t(∆x)2] ,

1
(∆x/∆t)

[
ε|u|+ 4

µ

(∆x)2

]
≤ 1
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Implementation: KdeV Solitons

Bore→ solitons
Solitons crossing
Stability check
Solitons in a box
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