More PDEs: Realistic Waves on Strings

 Include Friction \& GravityRubin H Landau

Sally Haerer, Producer-Director
Based on A Survey of Computational Physics by Landau, Páez, \& Bordeianu with Support from the National Science Foundation

Course: Computational Physics II

Numerical Solution of Wave Equations

- Many PDE Wave Equations $y(x, t)$
- First standard "wave equation", then beyond texts
- Again t-stepping, leapfrog algorithm
- Also quantum wave packets (complex), E\&M vector
- Also CFD: dispersion, shocks, solitons

Theory: Hyperbolic Wave Equation

- Recall standing \& travel wave demo (do!)
- $L=$ length, fastened at ends
- $\rho=$ density $=$ mass/length $=$ constant
- T = tension = constant $=$ high, no g sag
- No friction
- $y(x, t)=$ small vertical displacement (1D)

Derive Hyperbolic (Linear) Wave Equation

- Small $\frac{y}{L}$
- Small slope $\frac{\partial y}{\partial x}$
- $\sin \theta \simeq \tan \theta=\frac{\partial y}{\partial x}$

Δx
- Isolate section Δx
- Restoring force $=\Delta T_{y}$
- $c=\sqrt{T / \rho} \neq$ string velocity
$=\partial y / \partial t$

$$
\begin{equation*}
\sum F_{y}=\rho \Delta x \frac{\partial^{2} y}{\partial t^{2}} \quad(F=m a) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum F_{y}=T \sin \theta_{x+\Delta x}-T \sin \theta_{x}=\left.T \frac{\partial y}{\partial x}\right|_{x+\Delta x}-\left.T \frac{\partial y}{\partial x}\right|_{x} \simeq T \frac{\partial^{2} y}{\partial x^{2}} \Delta x \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{\partial^{2} y(x, t)}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} y(x, t)}{\partial t^{2}} \tag{3}
\end{equation*}
$$

Boundary \& Initial Conditions on Solution

$$
\begin{equation*}
\frac{\partial^{2} y(x, t)}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} y(x, t)}{\partial t^{2}} \tag{1}
\end{equation*}
$$

- PDE: two independent variables x and t
- Initial condition = triangular "pluck":

$$
y(x, t=0)= \begin{cases}1.25 x / L, & x \leq 0.8 L, \tag{2}\\ (5-5 x / L), & x>0.8 L\end{cases}
$$

- $2^{\text {nd }} \mathcal{O}(t) \Rightarrow$ need $2^{\text {nd }}$ IC
- Released from rest:

$$
\begin{equation*}
\frac{\partial y}{\partial t}(x, t=0)=0, \quad \text { (initial condition 2) } \tag{3}
\end{equation*}
$$

- Boundary conditions for all times

$$
\begin{equation*}
y(0, t) \equiv 0, \quad y(L, t) \equiv 0 \tag{4}
\end{equation*}
$$

Normal-Mode Solution (Analytic But ∞)

Applet

(1) Assume $y(x, t)=X(x) T(t)$
(2) i) Substitute, ii) $\div y$, iii) iff:

$$
\begin{equation*}
\frac{d^{2} T(t)}{d t^{2}}+\omega^{2} T(t)=0, \quad \frac{d^{2} X(x)}{d t^{2}}+k^{2} X(x)=0, \quad k \stackrel{\text { def }}{=} \frac{\omega}{c} \tag{1}
\end{equation*}
$$

(3) Determine $\omega \& k$ via BC

$$
\begin{align*}
\Rightarrow \quad & X_{n}(x)=A_{n} \sin k_{n} x, \quad k_{n}=\frac{\pi(n+1)}{L}, \quad n=0,1, \ldots \tag{2}\\
T_{n}(t) & =C_{n} \sin \omega_{n} t+D_{n} \cos \omega_{n} t \tag{3}
\end{align*}
$$

(4) Zero velocity IC2 $\Rightarrow C_{n}=0$; linear superposition

$$
\begin{align*}
y(x, t) & =\sum_{n}^{\infty} B_{n} \sin n k_{0} x \cos \omega_{n} t \tag{4}\\
B_{m} & =6.25 \sin (0.8 m \pi) / m^{2} \pi^{2} \tag{5}
\end{align*}
$$

Algorithm: Discretized Wave Equation

- Discretized (difference) wave equation:

$$
\begin{equation*}
\frac{y_{i, j+1}+y_{i, j-1}-2 y_{i, j}}{c^{2}(\Delta t)^{2}}=\frac{y_{i+1, j}+y_{i-1, j}-2 y_{i, j}}{(\Delta x)^{2}} \tag{2}
\end{equation*}
$$

Wave Equation Algorithm: Time-Stepping

$$
\begin{equation*}
\frac{y_{i, j+1}+y_{i, j-1}-2 y_{i, j}}{c^{2}(\Delta t)^{2}}=\frac{y_{i+1, j}+y_{i-1, j}-2 y_{i, j}}{(\Delta x)^{2}} \tag{1}
\end{equation*}
$$

- NB: only 3 times enter
- (j+1, j, j-1)= (future, present, past)
- Predict future:

$$
\begin{equation*}
y_{i, j+1}=2 y_{i, j}-y_{i, j-1}+\frac{c^{2}}{c^{\prime 2}}\left[y_{i+1, j}+y_{i-1, j}-2 y_{i, j}\right] \tag{2}
\end{equation*}
$$

- $c^{\prime} \stackrel{\text { def }}{=} \Delta x / \Delta t$
- $\frac{c^{\prime}}{c}$ determines stability

Discussion: Time Stepping Algorithm

Generalities

- Leapfrog vs relaxation
- Store only 3 time values
- Very small Δt for high precision
- Starting requires $t<0$
- "At rest" $I C+C D$:

$$
\begin{aligned}
& \frac{\partial y}{\partial t}(x, 0) \simeq \frac{y(x, \Delta t)-y(x,-\Delta t)}{2 \Delta t}=0 \\
& \Rightarrow \quad y_{i, 0}=y_{i, 2}
\end{aligned}
$$

von Neumann (Courant) Stability Condition

$$
\begin{equation*}
\frac{y_{i, j+1}+y_{i, j-1}-2 y_{i, j}}{c^{2}(\Delta t)^{2}}=\frac{y_{i+1, j}+y_{i-1, j}-2 y_{i, j}}{(\Delta x)^{2}} \tag{1}
\end{equation*}
$$

General Truth: Can't pick arbitrary $\Delta x, \Delta t$

- Substitute into (1) $y_{m, j}=\xi^{j} \exp (i k m \Delta x)$
- Avoid exponential growth in time $|\xi|>1$ (unstable)
- True generally for transport equations (Press):

$$
\begin{equation*}
c \leq c^{\prime}=\frac{\Delta x}{\Delta t} \quad \text { (Courant condition) } \tag{2}
\end{equation*}
$$

- Better: smaller Δt; worse smaller Δx
- (1) = symmetric, yet IC, BC \neq symmetric

Non Computational Exercises

(1) Suggest an algorithm to solve wave equation in 1 step.
(1) How much memory is required?
(2) How does this compare with the memory required for the leapfrog method?
(2) Suggest an algorithm to solve the wave equation via relaxation (like Laplace's equation).
(1) What would you take as the initial guess?
(2) How would you know when the procedure has converged?
(3) How would you know if the solution is correct?

Wave Equation Implementation

Applet

 CODE

- Study EqString.py, outlining the structure
- You will need to modify this code to add new physics.
- NB: $L=1 \Rightarrow y / L \ll 1$ not OK ($L=1000$ better $)$
- $\rho=0.01 \mathrm{~kg} / \mathrm{m}, T=40 \mathrm{~N}, \Delta=0.01 \mathrm{~cm}$

Assessment

(1) Solve wave equation
(2) Make surface or animation $y(x, t)$
(3) Explore $\Delta x \& \Delta t$ combos
(1) Is stability condition obeyed?
© Compare "analytic" vs numeric solutions

- Estimate c via graphs, compare $\sqrt{\frac{T}{\rho}}$
O. Choose IC for single normal mode:
${ }_{y}^{120}(x, t=0)=0.001 \sin 2 \pi x, \quad \frac{\partial y}{\partial t}(x, t=0)=0$
(3) Do 2 near modes beat?
- Interference if plucked in middle?

