Why?	∃ CP	Skills	Book	MC	Scatt	Billard	HPC	Waves	CFD	MD	EM	Conc
00	0	00	00	00	0	0	0	00	00	0	0	0

Computational Problems for Physics Courses Motivation & Examples

Rubin H Landau

http://physics.oregonstate.edu/~ landaur/

CP Author, Founder CP Degree Program

Computational subatomic few-body systems (1966-2003) CP Education (1988-)

Grad School: How creative? Plenty smarts; Exact Compute

DCOMP Boston, March 2019

Why?	∃ CP	Skills	Book	MC	Scatt	Billard	HPC	Waves	CFD	MD	EM	Conc
00	0	00	00	00	0	0	0	00	00	0	0	0

Computational Problems for Physics Courses Motivation & Examples

Rubin H Landau

http://physics.oregonstate.edu/~ landaur/

CP Author, Founder CP Degree Program

Computational subatomic few-body systems (1966-2003) CP Education (1988-)

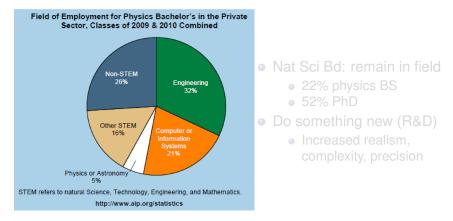
Grad School: How creative? Plenty smarts; Exact Compute

DCOMP Boston, March 2019

				Waves		

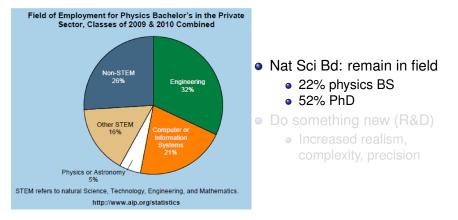
Contributors (Coauthors: Manuel Paez & Cristian Bordeianu-d)

In Addition: Suffering Students & Collaborators

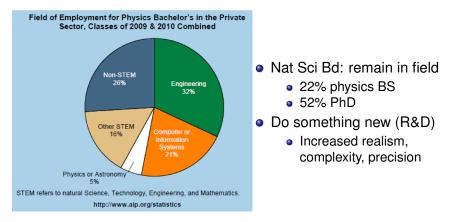

- C. E. Yaguna, J. Zuluaga, Oscar A. Restrepo, Guillermo Avendano-Franco
- Paul Fink, Robyn Wangberg, CoAuthors
- Justin Elser, Chris Sullivan (systems)
- Sally Haerer, Saturo S. Kano (consultants, producers)
- Melanie Johnson (Unix Tutorials)
- Hans Kowallik (CP text, sounds, codes, LAPACK, PVM)
- Matthew Ervin Des Voigne (tutorials)
- Bertrand Laubsch (Java sound, decay)
- Jon J Maestri (vizualizations, animations, quantum wave packets)
- Juan Vanegas (OpenDX)
- Al Stetz, David McIntyre (First Course)

- Connelly Barnes (OOP, PtPlot)
- Phil Carter, Donna Hertel (MPI)
- Zlatko Dimcovic (Wavelets, Java I/O)
- Joel Wetzel (figures)
- Pat Cannan, Don Corliss, Corvallis HS (N-D Newton Raphson)
- Brian Schlatter
- Daniel Moore, (REU, Sum 98; Whitman Coll)
- Justin Murray, (REU, Sum 98; Weber State)
- Brandon Smith, (REU, Sum 97; Chico State/SDSC)
- Paul D. Hillard, III (REU, Sum 96; Southern U)
- Kevin Wolver, (REU, Sum 96; St Ambrose)

Torribor I hybrod Ed. Take Computation Conodo

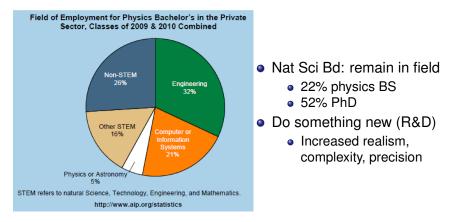

Why? Computation = Big Part of Physics & Much Else

Data \Rightarrow Undergrad overemphasize Physics \rightarrow weaker preparation: career, fufillment


Why? Computation = Big Part of Physics & Much Else

Data \Rightarrow Undergrad overemphasize Physics \rightarrow weaker preparation: career, fufillment

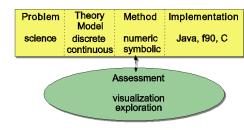
Why? Computation = Big Part of Physics & Much Else



Data \Rightarrow Undergrad overemphasize Physics \rightarrow weaker preparation: career, fufillment

(3)

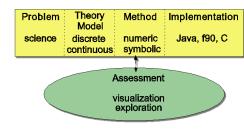
Why? Computation = Big Part of Physics & Much Else



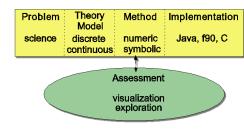
Data \Rightarrow Undergrad overemphasize Physics \rightarrow weaker preparation: career, fufillment

7/40

				Waves 00		

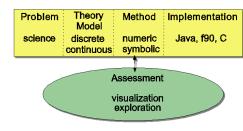

- "We are teaching the same things we taught 50 years ago"
 APS/AAPT Taskforce on Grad Ed., R Diehl, 2004
- OK that's physics (APS/AAPT Taskforce)
- Do take math, then Math Mtds of Physics ⇒
- Teach Computation within physics
- Use research-like examples

- Teach: PH + CS + Math in problem-solving context
- Using C when teach P ≠ CP
- "OK for pedagogy" \neq life


- "We are teaching the same things we taught 50 years ago" APS/AAPT Taskforce on Grad Ed., R Diehl, 2004
- OK that's physics (APS/AAPT Taskforce)
- Do take math, then Math Mtds of Physics ⇒
- Teach Computation within physics
- Use research-like examples

- Teach: PH + CS + Math in problem-solving context
- Using C when teach P ≠ CP
- "OK for pedagogy" \neq life

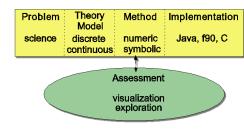
- "We are teaching the same things we taught 50 years ago" APS/AAPT Taskforce on Grad Ed., R Diehl, 2004
- OK that's physics (APS/AAPT Taskforce)
- Do take math, then Math Mtds of Physics ⇒
- Teach Computation within physics
- Use research-like examples



- Teach: PH + CS + Math in problem-solving context
- Using C when teach P ≠ CP
- "OK for pedagogy" \neq life

10/40

- "We are teaching the same things we taught 50 years ago" APS/AAPT Taskforce on Grad Ed., R Diehl, 2004
- OK that's physics (APS/AAPT Taskforce)
- Do take math, then Math Mtds of Physics ⇒
- Teach Computation within physics
- Use research-like examples



- Teach: PH + CS + Math in problem-solving context
- Using C when teach P ≠ CP
- "OK for pedagogy" \neq life

11/40

- "We are teaching the same things we taught 50 years ago" APS/AAPT Taskforce on Grad Ed., R Diehl, 2004
- OK that's physics (APS/AAPT Taskforce)
- Do take math, then Math Mtds of Physics ⇒
- Teach Computation within physics
- Use research-like examples

- Teach: PH + CS + Math in problem-solving context
- Using C when teach P \neq CP
- "OK for pedagogy" \neq life

- 1980s: CP Texts, now plenty good ones
- \Rightarrow 1990s: CP Courses, Computational X programs, ...
- No need repeat past developments (PICCUP)
- Need integrate computation into physics courses
- CRC Press Series in CP; S Gottieb, R Landau, Eds

- 1980s: CP Texts, now plenty good ones
- \Rightarrow 1990s: CP Courses, Computational X programs, . . .
- No need repeat past developments (PICCUP)
- Need integrate computation into physics courses
- CRC Press Series in CP; S Gottieb, R Landau, Eds

- 1980s: CP Texts, now plenty good ones
- \Rightarrow 1990s: CP Courses, Computational X programs, ...
- No need repeat past developments (PICCUP)
- Need integrate computation into physics courses
- CRC Press Series in CP; S Gottieb, R Landau, Eds

- 1980s: CP Texts, now plenty good ones
- \Rightarrow 1990s: CP Courses, Computational X programs, ...
- No need repeat past developments (PICCUP)
- Need integrate computation into physics courses
- CRC Press Series in CP; S Gottieb, R Landau, Eds

Why? \exists CP Skills Book MC Scatt Billard HPC Waves CFD MD EM Conc

Computational Competencies by Comp Physicists

\simeq **AAPT Statement** (G, T, L, C, 2011)

 \simeq HPC University (Ohio State) Computational Competencies

Tools All Physicists Should Know

Basic Numeric Tools

- Integration \Rightarrow Guassian
- Differentiation
- Floating Point Math [Errors]
- Search Techniques
- Linear Algebra [Libes]
- Languages, Environments
- Program compiled (2) (\neq CS)
- Symbolic
- Operating sys (2)

• ODEs Solutions \Rightarrow rk4

- Planets, 3-B Orbits
- CM & QM Chaotic Scattering
- Tools for Analysis
- Data fitting
- Visualize functions & data
- Document prep (LATEX)
- Fourier, DFT, FFT
- Wavelets*,Principal Components*

Why? \exists CP Skills Book MC Scatt Billard HPC Waves CFD MD EM Conc

Computational Competencies by Comp Physicists

 \simeq **AAPT Statement** (G, T, L, C, 2011)

 \simeq HPC University (Ohio State) Computational Competencies

Tools All Physicists Should Know

- Basic Numeric Tools
- Integration \Rightarrow Guassian
- Differentiation
- Floating Point Math [Errors]
- Search Techniques
- Linear Algebra [Libes]
- Languages, Environments
- Program compiled (2) (\neq CS)
- Symbolic
- Operating sys (2)

ODEs Solutions ⇒ rk4

- Planets, 3-B Orbits
- CM & QM Chaotic Scattering
- Tools for Analysis
- Data fitting
- Visualize functions & data
- Document prep (LATEX)
- Fourier, DFT, FFT
- Wavelets*,Principal Components*

AAPT Undergraduate Curriculum Task Force, 2016

 Computation ubiquitous in physics

Skills

Whv?

• Deeper understanding of physics via fundamental laws

Book

MC

- Spreadsheets: "see exactly what's happening"
- Mathematical computing packages: get computing over with quickly, don't emphasize computing

 Programming language: worthwhile "in the long term"

MD

- Special-purpose software best choice for classrooms, not empowering
- Process data

Waves

- Represent data visually
- Prepare documents and presentations

AAPT Undergraduate Curriculum Task Force, 2016

 Computation ubiquitous in physics

Skills

0

Whv?

• Deeper understanding of physics via fundamental laws

Book

MC

- Spreadsheets: "see exactly what's happening"
- Mathematical computing packages: get computing over with quickly, don't emphasize computing

 Programming language: worthwhile "in the long term"

MD

- Special-purpose software best choice for classrooms, not empowering
- Process data

Waves

- Represent data visually
- Prepare documents and presentations

AAPT Undergraduate Curriculum Task Force, 2016

 Computation ubiquitous in physics

Skills

0.

Whv?

• Deeper understanding of physics via fundamental laws

Book

MC

- Spreadsheets: "see exactly what's happening"
- Mathematical computing packages: get computing over with quickly, don't emphasize computing

 Programming language: worthwhile "in the long term"

MD

- Special-purpose software best choice for classrooms, not empowering
- Process data

Waves

- Represent data visually
- Prepare documents and presentations

AAPT Undergraduate Curriculum Task Force, 2016

 Computation ubiquitous in physics

Skills

0.

Whv?

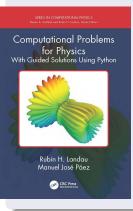
• Deeper understanding of physics via fundamental laws

Book

MC

- Spreadsheets: "see exactly what's happening"
- Mathematical computing packages: get computing over with quickly, don't emphasize computing

 Programming language: worthwhile "in the long term"


MD

- Special-purpose software best choice for classrooms, not empowering
- Process data
- Represent data visually
- Prepare documents and presentations

Computational Problems for Physics Courses

2018 Book, collected problems, Projects & Demos [shameless commerce]

Chapters; Some borrowed, some new, all long overdue

Skills

Book

•0

MC

Whv?

0

Computational Basics

- Data Analytics
- Classical, Nonlinear
 Dynamics
- Waves,
 Fluids

E & M

Quantum Mechanics

MD

- Thermo, Stat Phys
- Bio Models: Population Dynamics, Plant Growth
- More Entry-Level Problems
- Python Codes

MC

Applications

Skills

Whv?

Explore Nonlinear Dynamics

Book

0.

- Bifurcations, phase space (CM)
- Double & Chaotic Pendula (CM)
- Fractals, Stat Growth (StatMech)
- Integral Equations (QM, CM)
- Monte Carlo, Stochastic
- Spontaneous Decay (QM)
- Random Walk (Thermo)
- Thermal Simulations (StatMech)
- Molecular Dynamics (≠ MC)
- Feynman Path Integrals (QM)

PDEs (relax, t step, split t)

MD

(will demo)

Laplace/Possion (EM)

Waves

- Heat [x-t diffusion] (Thermo)
- Realistic Strings [waves] (CM)
- Quantum Wave Packets (QM)

Fluid Dynamics

- Fluid Flow (> freshman)
- Shock Waves (CM)
- Solitons (CM)

MC

Applications

Skills

Whv?

Explore Nonlinear Dynamics

Book

0.

- Bifurcations, phase space (CM)
- Double & Chaotic Pendula (CM)
- Fractals, Stat Growth (StatMech)
- Integral Equations (QM, CM)
- Monte Carlo, Stochastic
- Spontaneous Decay (QM)
- Random Walk (Thermo)
- Thermal Simulations (StatMech)
- Molecular Dynamics (≠ MC)
- Feynman Path Integrals (QM)

PDEs (relax, t step, split t)

MD

(will demo)

Laplace/Possion (EM)

Waves

- Heat [x-t diffusion] (Thermo)
- Realistic Strings [waves] (CM)
- Quantum Wave Packets (QM)
- Fluid Dynamics
- Fluid Flow (> freshman)
- Shock Waves (CM)
- Solitons (CM)

MC

Applications

Skills

Whv?

• Explore Nonlinear Dynamics

Book

0.

- Bifurcations, phase space (CM)
- Double & Chaotic Pendula (CM)
- Fractals, Stat Growth (StatMech)
- Integral Equations (QM, CM)
- Monte Carlo, Stochastic
- Spontaneous Decay (QM)
- Random Walk (Thermo)
- Thermal Simulations (StatMech)
- O Molecular Dynamics (≠ MC)
- Feynman Path Integrals (QM)

- PDEs (relax, t step, split t)
- Laplace/Possion (EM)

Waves

MD

(will demo)

- Heat [x-t diffusion] (Thermo)
- Realistic Strings [waves] (CM)
- Quantum Wave Packets (QM)
- Fluid Dynamics
- Fluid Flow (> freshman)
- Shock Waves (CM)
- Solitons (CM)

MC

Applications

Skills

Whv?

Explore Nonlinear Dynamics

Book

0.

- Bifurcations, phase space (CM)
- Double & Chaotic Pendula (CM)
- Fractals, Stat Growth (StatMech)
- Integral Equations (QM, CM)
- Monte Carlo, Stochastic
- Spontaneous Decay (QM)
- Random Walk (Thermo)
- Thermal Simulations (StatMech)
- O Molecular Dynamics (≠ MC)
- Feynman Path Integrals (QM)

- PDEs (relax, t step, split t)
- Laplace/Possion (EM)

Waves

MD

(will demo)

- Heat [x-t diffusion] (Thermo)
- Realistic Strings [waves] (CM)
- Quantum Wave Packets (QM)
- Fluid Dynamics
- Fluid Flow (> freshman)
- Shock Waves (CM)
- Solitons (CM)

MC

Applications

Skills

Whv?

Explore Nonlinear Dynamics

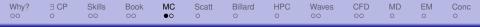
Book

0.

- Bifurcations, phase space (CM)
- Double & Chaotic Pendula (CM)
- Fractals, Stat Growth (StatMech)
- Integral Equations (QM, CM)
- Monte Carlo, Stochastic
- Spontaneous Decay (QM)
- Random Walk (Thermo)
- Thermal Simulations (StatMech)
- Molecular Dynamics (≠ MC)
- Feynman Path Integrals (QM)

- PDEs (relax, t step, split t)
- Laplace/Possion (EM)

Waves


MD

(will demo)

- Heat [x-t diffusion] (Thermo)
- Realistic Strings [waves] (CM)
- Quantum Wave Packets (QM)

Fluid Dynamics

- Fluid Flow (> freshman)
- Shock Waves (CM)
- Solitons (CM)

Monte-Carlo Random Walks Walk3DVis.py ==

•
$$\Delta x_i = r_i, \ \Delta y_i = r_j$$

- Good to "see" a walk
- Stochastic processes & math: very interesting, $R_{rms} \propto \sqrt{N}$
- Random, probability, experimental statistics < taught

Monte-Carlo Decay Simulation DecaySoundVisMod.py

Scatt

Whv?

∃ CP

Book

MC

0.

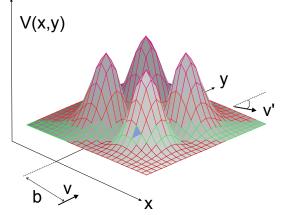
Analytic = $e^{-t/\tau} \simeq$ Simulation (discrete): Closer Nature

$$\mathcal{P} = \frac{\Delta N(t)/N(t)}{\Delta t} = -\lambda \quad \text{(Law of Nature)} \tag{1}$$

$$\Rightarrow \quad \frac{\Delta N(t)}{\Delta t} = -\lambda N(t) \quad \text{(Real Physics)} \tag{2}$$

$$\Rightarrow \quad \frac{dN(t)}{dt} = \frac{dN}{dt} (0) e^{-\lambda t} \quad \text{(Approximate Physics)} \tag{3}$$

HPC


Waves

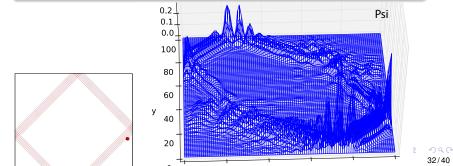
MD

One line algorithm: if $r_i < \lambda$, $\Delta N = \Delta N + 1$

- Just Coupled ODEs
 - $\mathbf{F} = m\mathbf{a}$

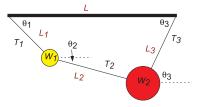
$$\mathbf{F} = -\nabla \left(x^2 y^2 e^{-x^2 - y^2} \right)$$

- Chaotic Scattering
- 3 Body Applet



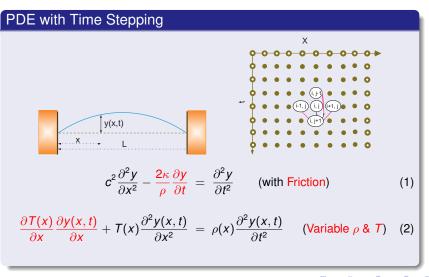
Classical & Quantum Chaos

Solve Same Problem Classically & Quantum Mechanically


- Billiards in enclosed figure can be chaotic (BC)
- Quantum Chaos hard to "see"
- Look for signature of classical chaos in QM

NewtonNDanimate.py

<Ex: 3 masses>



- T_i , $\theta_i = ?$
- 9 nonlinear equations

$$\begin{split} L_1 \cos \theta_1 + L_2 \cos \theta_2 + L_3 \cos \theta_3 &= L, \\ L_1 \sin \theta_1 + L_2 \sin \theta_2 - L_3 \sin \theta_3 &= 0, \\ \sin^2 \theta_1 + \cos^2 \theta_1 &= 1 \\ \sin^2 \theta_2 + \cos^2 \theta_2 &= 1 \\ \sin^2 \theta_3 + \cos^2 \theta_3 &= 1 \end{split}$$

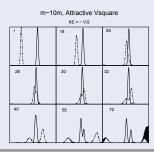
- Newton-Raphson search
- Use matrix libes
 - $T_1 \sin \theta_1 T_2 \sin \theta_2 W_1 = 0$ $T_1 \cos \theta_1 - T_2 \cos \theta_2 = 0$ $T_2 \sin \theta_2 + T_3 \sin \theta_3 - W_2 = 0$ $T_2 \cos \theta_2 - T_3 \cos \theta_3 = 0$

Time-Dependent Schrödinger Eqn

MC

Scatt

Book


Wavepacket – Wavepacket Interactions

$$i\frac{\partial\psi(x,t)}{\partial t} = -\frac{1}{2m}\frac{\partial^2\psi(x,t)}{\partial x^2} + V(x)\psi(x,t) \quad (1 \text{ particle})$$

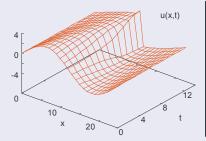
$$i\frac{\partial\psi(x_1,x_2,t)}{\partial t} = -\frac{1}{2m_1}\frac{\partial^2\psi(x_1,x_2,t)}{\partial x_1^2} - \frac{1}{2m_2}\frac{\partial^2\psi(x_2,x_2,t)}{\partial x_2^2} + V(x_1,x_2)\psi(x_1,x_2,t) \quad (2 \text{ particles})$$

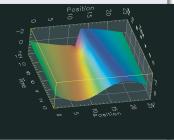
- Often ignored in QM
- 1 packet, 2 Slits
- Packet(x₁) Packet(x₂)

Whv?

HPC

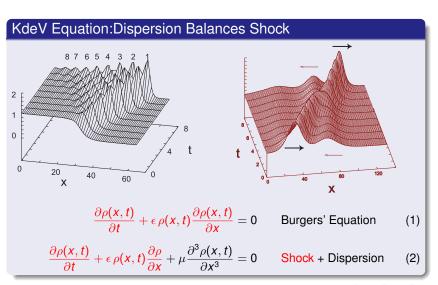
Waves

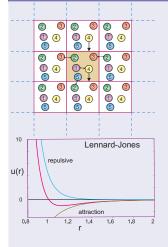

0.


MD

Why? ∃ CP Book MC Scatt HPC Waves CFD MD •0

Shock Wave Physics


Singularity \Rightarrow Better Algorithm (Lax) Singular Nature? $\frac{\partial \rho(\mathbf{x},t)}{\partial t} + c \frac{\partial \rho(\mathbf{x},t)}{\partial \mathbf{x}} = \mathbf{0}$ (Advection/Continuity) (1) $\frac{\partial \rho(\mathbf{x},t)}{\partial t} + \epsilon \, \rho(\mathbf{x},t) \frac{\partial \rho(\mathbf{x},t)}{\partial \mathbf{x}} = \mathbf{0}$ (Burgers' Eqn \Rightarrow Shock) (2)


36/40

Straightforward, Obvious, Ridiculously Effective

- > Chem 101: walls \Rightarrow PV = nRT
- Just $F_{QM} = ma_i$; 10⁸ times
- Deterministic \neq statistics (*kT*)

Maxwell: Finite Difference Time Domain

MC

FDTD.py 🔤

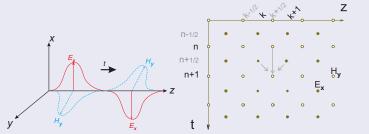
EM

Split Space-Time Steps

Book

Why?

Problem: waveguide


MD

$$\tilde{E}_{x}^{k,n+1/2} = \tilde{E}_{x}^{k,n-1/2} + \beta \left(H_{y}^{k-1/2,n} - H_{y}^{k+1/2,n} \right)$$
(1)

HPC

Waves

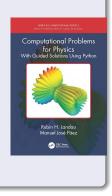
$$H_{y}^{k+1/2,n+1} = H_{y}^{k+1/2,n} + \beta \left(\tilde{E}_{x}^{k,n+1/2} - \tilde{E}_{x}^{k+1,n+1/2} \right)$$
(2)

- Coupled E_x , H_y drive other
- Easy: even Excell

Take Home Lessons: Rejuvenate Physics Ed

Computations Part of Real-World Physics

MC


- Include Research-like & Computation problems
- Within physics course

Skills

Book

Whv?

- Computation Problems Book may help
- Agree: faulty math ⇒ bad science?
- So uncertain computation ⇒ bad physics?
- Computation too important to leave to CS

MD

Conc

Waves